Cargando…

The identity and distribution of neural cells expressing the mesodermal determinant spadetail

BACKGROUND: The spadetail (spt) gene of zebrafish is expressed in presomitic mesoderm and in neural cells previously suggested to be Rohon-Beard neurons. The mechanism(s) generating the apparently irregular rostrocaudal distribution of spt-expressing cells in the developing CNS is unknown. RESULTS:...

Descripción completa

Detalles Bibliográficos
Autores principales: Tamme, Richard, Wells, Simon, Conran, John G, Lardelli, Michael
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2002
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC119859/
https://www.ncbi.nlm.nih.gov/pubmed/12126484
http://dx.doi.org/10.1186/1471-213X-2-9
_version_ 1782120298129129472
author Tamme, Richard
Wells, Simon
Conran, John G
Lardelli, Michael
author_facet Tamme, Richard
Wells, Simon
Conran, John G
Lardelli, Michael
author_sort Tamme, Richard
collection PubMed
description BACKGROUND: The spadetail (spt) gene of zebrafish is expressed in presomitic mesoderm and in neural cells previously suggested to be Rohon-Beard neurons. The mechanism(s) generating the apparently irregular rostrocaudal distribution of spt-expressing cells in the developing CNS is unknown. RESULTS: spt-expressing neural cells co-express huC, a marker of neurons. These cells also co-express the genes islet-1, -2 and -3 but not valentino. The islet-1 gene expression, irregular distribution and dorsolateral position of spt-expressing cells in the developing CNS are characteristic of dorsal longitudinal ascending (DoLA) interneurons. Shortly after their birth, these neurons extend processes rostrally into which spt mRNA is transported. At 24 hours post fertilisation(hpf), spt-expressing neurons occur most frequently at rostral levels caudal of the 5(th)-formed somite pair. There is no apparent bias in the number of spt-expressing cells on the left or right sides of embryos. Extended staining for spt-transcription reveals expression in the dorsocaudal cells of somites at the same dorsoventral level as the spt-expressing neurons. There is frequent juxtaposition of spt-expression in newly formed somites and in neurons. This suggests that both types of spt-expressing cell respond to a common positional cue or that neurons expressing spt are patterned irregularly by flanking somitic mesoderm. CONCLUSIONS: spt-expressing cells in the developing CNS appear to be DoLA interneurons. The irregular distribution of these cells along the rostrocaudal axis of the spinal cord may be due to "inefficient" patterning of neural spt expression by a signal(s) from flanking, regularly distributed somites also expressing spt.
format Text
id pubmed-119859
institution National Center for Biotechnology Information
language English
publishDate 2002
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-1198592002-09-04 The identity and distribution of neural cells expressing the mesodermal determinant spadetail Tamme, Richard Wells, Simon Conran, John G Lardelli, Michael BMC Dev Biol Research Article BACKGROUND: The spadetail (spt) gene of zebrafish is expressed in presomitic mesoderm and in neural cells previously suggested to be Rohon-Beard neurons. The mechanism(s) generating the apparently irregular rostrocaudal distribution of spt-expressing cells in the developing CNS is unknown. RESULTS: spt-expressing neural cells co-express huC, a marker of neurons. These cells also co-express the genes islet-1, -2 and -3 but not valentino. The islet-1 gene expression, irregular distribution and dorsolateral position of spt-expressing cells in the developing CNS are characteristic of dorsal longitudinal ascending (DoLA) interneurons. Shortly after their birth, these neurons extend processes rostrally into which spt mRNA is transported. At 24 hours post fertilisation(hpf), spt-expressing neurons occur most frequently at rostral levels caudal of the 5(th)-formed somite pair. There is no apparent bias in the number of spt-expressing cells on the left or right sides of embryos. Extended staining for spt-transcription reveals expression in the dorsocaudal cells of somites at the same dorsoventral level as the spt-expressing neurons. There is frequent juxtaposition of spt-expression in newly formed somites and in neurons. This suggests that both types of spt-expressing cell respond to a common positional cue or that neurons expressing spt are patterned irregularly by flanking somitic mesoderm. CONCLUSIONS: spt-expressing cells in the developing CNS appear to be DoLA interneurons. The irregular distribution of these cells along the rostrocaudal axis of the spinal cord may be due to "inefficient" patterning of neural spt expression by a signal(s) from flanking, regularly distributed somites also expressing spt. BioMed Central 2002-07-18 /pmc/articles/PMC119859/ /pubmed/12126484 http://dx.doi.org/10.1186/1471-213X-2-9 Text en Copyright © 2002 Tamme et al; licensee BioMed Central Ltd. This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original URL.
spellingShingle Research Article
Tamme, Richard
Wells, Simon
Conran, John G
Lardelli, Michael
The identity and distribution of neural cells expressing the mesodermal determinant spadetail
title The identity and distribution of neural cells expressing the mesodermal determinant spadetail
title_full The identity and distribution of neural cells expressing the mesodermal determinant spadetail
title_fullStr The identity and distribution of neural cells expressing the mesodermal determinant spadetail
title_full_unstemmed The identity and distribution of neural cells expressing the mesodermal determinant spadetail
title_short The identity and distribution of neural cells expressing the mesodermal determinant spadetail
title_sort identity and distribution of neural cells expressing the mesodermal determinant spadetail
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC119859/
https://www.ncbi.nlm.nih.gov/pubmed/12126484
http://dx.doi.org/10.1186/1471-213X-2-9
work_keys_str_mv AT tammerichard theidentityanddistributionofneuralcellsexpressingthemesodermaldeterminantspadetail
AT wellssimon theidentityanddistributionofneuralcellsexpressingthemesodermaldeterminantspadetail
AT conranjohng theidentityanddistributionofneuralcellsexpressingthemesodermaldeterminantspadetail
AT lardellimichael theidentityanddistributionofneuralcellsexpressingthemesodermaldeterminantspadetail
AT tammerichard identityanddistributionofneuralcellsexpressingthemesodermaldeterminantspadetail
AT wellssimon identityanddistributionofneuralcellsexpressingthemesodermaldeterminantspadetail
AT conranjohng identityanddistributionofneuralcellsexpressingthemesodermaldeterminantspadetail
AT lardellimichael identityanddistributionofneuralcellsexpressingthemesodermaldeterminantspadetail