Cargando…

Vitamin A deficiency alters the pulmonary parenchymal elastic modulus and elastic fiber concentration in rats

BACKGROUND: Bronchial hyperreactivity is influenced by properties of the conducting airways and the surrounding pulmonary parenchyma, which is tethered to the conducting airways. Vitamin A deficiency (VAD) is associated with an increase in airway hyperreactivity in rats and a decrease in the volume...

Descripción completa

Detalles Bibliográficos
Autores principales: McGowan, Stephen E, Takle, Erika J, Holmes, Amey J
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2005
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1199621/
https://www.ncbi.nlm.nih.gov/pubmed/16033655
http://dx.doi.org/10.1186/1465-9921-6-77
_version_ 1782124882109136896
author McGowan, Stephen E
Takle, Erika J
Holmes, Amey J
author_facet McGowan, Stephen E
Takle, Erika J
Holmes, Amey J
author_sort McGowan, Stephen E
collection PubMed
description BACKGROUND: Bronchial hyperreactivity is influenced by properties of the conducting airways and the surrounding pulmonary parenchyma, which is tethered to the conducting airways. Vitamin A deficiency (VAD) is associated with an increase in airway hyperreactivity in rats and a decrease in the volume density of alveoli and alveolar ducts. To better define the effects of VAD on the mechanical properties of the pulmonary parenchyma, we have studied the elastic modulus, elastic fibers and elastin gene-expression in rats with VAD, which were supplemented with retinoic acid (RA) or remained unsupplemented. METHODS: Parenchymal mechanics were assessed before and after the administration of carbamylcholine (CCh) by determining the bulk and shear moduli of lungs that that had been removed from rats which were vitamin A deficient or received a control diet. Elastin mRNA and insoluble elastin were quantified and elastic fibers were enumerated using morphometric methods. Additional morphometric studies were performed to assess airway contraction and alveolar distortion. RESULTS: VAD produced an approximately 2-fold augmentation in the CCh-mediated increase of the bulk modulus and a significant dampening of the increase in shear modulus after CCh, compared to vitamin A sufficient (VAS) rats. RA-supplementation for up to 21 days did not reverse the effects of VAD on the elastic modulus. VAD was also associated with a decrease in the concentration of parenchymal elastic fibers, which was restored and was accompanied by an increase in tropoelastin mRNA after 12 days of RA-treatment. Lung elastin, which was resistant to 0.1 N NaOH at 98°, decreased in VAD and was not restored after 21 days of RA-treatment. CONCLUSION: Alterations in parenchymal mechanics and structure contribute to bronchial hyperreactivity in VAD but they are not reversed by RA-treatment, in contrast to the VAD-related alterations in the airways.
format Text
id pubmed-1199621
institution National Center for Biotechnology Information
language English
publishDate 2005
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-11996212005-09-09 Vitamin A deficiency alters the pulmonary parenchymal elastic modulus and elastic fiber concentration in rats McGowan, Stephen E Takle, Erika J Holmes, Amey J Respir Res Research BACKGROUND: Bronchial hyperreactivity is influenced by properties of the conducting airways and the surrounding pulmonary parenchyma, which is tethered to the conducting airways. Vitamin A deficiency (VAD) is associated with an increase in airway hyperreactivity in rats and a decrease in the volume density of alveoli and alveolar ducts. To better define the effects of VAD on the mechanical properties of the pulmonary parenchyma, we have studied the elastic modulus, elastic fibers and elastin gene-expression in rats with VAD, which were supplemented with retinoic acid (RA) or remained unsupplemented. METHODS: Parenchymal mechanics were assessed before and after the administration of carbamylcholine (CCh) by determining the bulk and shear moduli of lungs that that had been removed from rats which were vitamin A deficient or received a control diet. Elastin mRNA and insoluble elastin were quantified and elastic fibers were enumerated using morphometric methods. Additional morphometric studies were performed to assess airway contraction and alveolar distortion. RESULTS: VAD produced an approximately 2-fold augmentation in the CCh-mediated increase of the bulk modulus and a significant dampening of the increase in shear modulus after CCh, compared to vitamin A sufficient (VAS) rats. RA-supplementation for up to 21 days did not reverse the effects of VAD on the elastic modulus. VAD was also associated with a decrease in the concentration of parenchymal elastic fibers, which was restored and was accompanied by an increase in tropoelastin mRNA after 12 days of RA-treatment. Lung elastin, which was resistant to 0.1 N NaOH at 98°, decreased in VAD and was not restored after 21 days of RA-treatment. CONCLUSION: Alterations in parenchymal mechanics and structure contribute to bronchial hyperreactivity in VAD but they are not reversed by RA-treatment, in contrast to the VAD-related alterations in the airways. BioMed Central 2005 2005-07-20 /pmc/articles/PMC1199621/ /pubmed/16033655 http://dx.doi.org/10.1186/1465-9921-6-77 Text en Copyright © 2005 McGowan et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research
McGowan, Stephen E
Takle, Erika J
Holmes, Amey J
Vitamin A deficiency alters the pulmonary parenchymal elastic modulus and elastic fiber concentration in rats
title Vitamin A deficiency alters the pulmonary parenchymal elastic modulus and elastic fiber concentration in rats
title_full Vitamin A deficiency alters the pulmonary parenchymal elastic modulus and elastic fiber concentration in rats
title_fullStr Vitamin A deficiency alters the pulmonary parenchymal elastic modulus and elastic fiber concentration in rats
title_full_unstemmed Vitamin A deficiency alters the pulmonary parenchymal elastic modulus and elastic fiber concentration in rats
title_short Vitamin A deficiency alters the pulmonary parenchymal elastic modulus and elastic fiber concentration in rats
title_sort vitamin a deficiency alters the pulmonary parenchymal elastic modulus and elastic fiber concentration in rats
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1199621/
https://www.ncbi.nlm.nih.gov/pubmed/16033655
http://dx.doi.org/10.1186/1465-9921-6-77
work_keys_str_mv AT mcgowanstephene vitaminadeficiencyaltersthepulmonaryparenchymalelasticmodulusandelasticfiberconcentrationinrats
AT takleerikaj vitaminadeficiencyaltersthepulmonaryparenchymalelasticmodulusandelasticfiberconcentrationinrats
AT holmesameyj vitaminadeficiencyaltersthepulmonaryparenchymalelasticmodulusandelasticfiberconcentrationinrats