Cargando…
A role for the Tec family kinase ITK in regulating SEB induced Interleukin-2 production in vivo via c-jun phosphorylation
BACKGROUND: Exposure to Staphylococcal Enterotoxin B (SEB), a bacterial superantigen secreted by the Gram-positive bacteria Staphyloccocus aureus, results in the expansion and eventual clonal deletion and anergy of Vβ8(+ )T cells, as well as massive cytokine release, including Interleukin-2 (IL-2)....
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2005
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1200558/ https://www.ncbi.nlm.nih.gov/pubmed/16042784 http://dx.doi.org/10.1186/1471-2172-6-19 |
_version_ | 1782124886905323520 |
---|---|
author | Ragin, Melanie J Hu, Jianfang Henderson, Andrew J August, Avery |
author_facet | Ragin, Melanie J Hu, Jianfang Henderson, Andrew J August, Avery |
author_sort | Ragin, Melanie J |
collection | PubMed |
description | BACKGROUND: Exposure to Staphylococcal Enterotoxin B (SEB), a bacterial superantigen secreted by the Gram-positive bacteria Staphyloccocus aureus, results in the expansion and eventual clonal deletion and anergy of Vβ8(+ )T cells, as well as massive cytokine release, including Interleukin-2 (IL-2). This IL-2 is rapidly secreted following exposure to SEB and may contribute to the symptoms seen following exposure to this bacterial toxin. The Tec family kinase ITK has been shown to be important for the production of IL-2 by T cells stimulated in vitro and may represent a good target for blocking the production of this cytokine in vivo. In order to determine if ITK represents such a target, mice lacking ITK were analyzed for their response to SEB exposure. RESULTS: It was found that T cells from mice lacking ITK exhibited significantly reduced proliferative responses to SEB exposure in vitro, as well as in vivo. Examination of IL-2 production revealed that ITK null mice produced reduced levels of this cytokine in vitro, and more dramatically, in vivo. In vivo analysis of c-jun phosphorylation, previously shown to be critical for regulating IL-2 production, revealed that this pathway was specifically activated in SEB reactive Vβ8(+ )(but not non-reactive Vβ6(+)) T cells from WT mice, but not in Vβ8(+ )T cells from ITK null mice. However, toxicity analysis indicated that both WT and ITK null animals were similarly affected by SEB exposure. CONCLUSION: These data show that ITK is required for IL-2 production induced by SEB in vivo, and may regulate signals leading IL-2 production, in part by regulating phosphorylation of c-jun. The data also suggest that perturbing T cell activation pathways leading to IL-2 does not necessarily lead to improved responses to SEB toxicity. |
format | Text |
id | pubmed-1200558 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2005 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-12005582005-09-09 A role for the Tec family kinase ITK in regulating SEB induced Interleukin-2 production in vivo via c-jun phosphorylation Ragin, Melanie J Hu, Jianfang Henderson, Andrew J August, Avery BMC Immunol Research Article BACKGROUND: Exposure to Staphylococcal Enterotoxin B (SEB), a bacterial superantigen secreted by the Gram-positive bacteria Staphyloccocus aureus, results in the expansion and eventual clonal deletion and anergy of Vβ8(+ )T cells, as well as massive cytokine release, including Interleukin-2 (IL-2). This IL-2 is rapidly secreted following exposure to SEB and may contribute to the symptoms seen following exposure to this bacterial toxin. The Tec family kinase ITK has been shown to be important for the production of IL-2 by T cells stimulated in vitro and may represent a good target for blocking the production of this cytokine in vivo. In order to determine if ITK represents such a target, mice lacking ITK were analyzed for their response to SEB exposure. RESULTS: It was found that T cells from mice lacking ITK exhibited significantly reduced proliferative responses to SEB exposure in vitro, as well as in vivo. Examination of IL-2 production revealed that ITK null mice produced reduced levels of this cytokine in vitro, and more dramatically, in vivo. In vivo analysis of c-jun phosphorylation, previously shown to be critical for regulating IL-2 production, revealed that this pathway was specifically activated in SEB reactive Vβ8(+ )(but not non-reactive Vβ6(+)) T cells from WT mice, but not in Vβ8(+ )T cells from ITK null mice. However, toxicity analysis indicated that both WT and ITK null animals were similarly affected by SEB exposure. CONCLUSION: These data show that ITK is required for IL-2 production induced by SEB in vivo, and may regulate signals leading IL-2 production, in part by regulating phosphorylation of c-jun. The data also suggest that perturbing T cell activation pathways leading to IL-2 does not necessarily lead to improved responses to SEB toxicity. BioMed Central 2005-07-22 /pmc/articles/PMC1200558/ /pubmed/16042784 http://dx.doi.org/10.1186/1471-2172-6-19 Text en Copyright © 2005 Ragin et al; licensee BioMed Central Ltd. |
spellingShingle | Research Article Ragin, Melanie J Hu, Jianfang Henderson, Andrew J August, Avery A role for the Tec family kinase ITK in regulating SEB induced Interleukin-2 production in vivo via c-jun phosphorylation |
title | A role for the Tec family kinase ITK in regulating SEB induced Interleukin-2 production in vivo via c-jun phosphorylation |
title_full | A role for the Tec family kinase ITK in regulating SEB induced Interleukin-2 production in vivo via c-jun phosphorylation |
title_fullStr | A role for the Tec family kinase ITK in regulating SEB induced Interleukin-2 production in vivo via c-jun phosphorylation |
title_full_unstemmed | A role for the Tec family kinase ITK in regulating SEB induced Interleukin-2 production in vivo via c-jun phosphorylation |
title_short | A role for the Tec family kinase ITK in regulating SEB induced Interleukin-2 production in vivo via c-jun phosphorylation |
title_sort | role for the tec family kinase itk in regulating seb induced interleukin-2 production in vivo via c-jun phosphorylation |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1200558/ https://www.ncbi.nlm.nih.gov/pubmed/16042784 http://dx.doi.org/10.1186/1471-2172-6-19 |
work_keys_str_mv | AT raginmelaniej aroleforthetecfamilykinaseitkinregulatingsebinducedinterleukin2productioninvivoviacjunphosphorylation AT hujianfang aroleforthetecfamilykinaseitkinregulatingsebinducedinterleukin2productioninvivoviacjunphosphorylation AT hendersonandrewj aroleforthetecfamilykinaseitkinregulatingsebinducedinterleukin2productioninvivoviacjunphosphorylation AT augustavery aroleforthetecfamilykinaseitkinregulatingsebinducedinterleukin2productioninvivoviacjunphosphorylation AT raginmelaniej roleforthetecfamilykinaseitkinregulatingsebinducedinterleukin2productioninvivoviacjunphosphorylation AT hujianfang roleforthetecfamilykinaseitkinregulatingsebinducedinterleukin2productioninvivoviacjunphosphorylation AT hendersonandrewj roleforthetecfamilykinaseitkinregulatingsebinducedinterleukin2productioninvivoviacjunphosphorylation AT augustavery roleforthetecfamilykinaseitkinregulatingsebinducedinterleukin2productioninvivoviacjunphosphorylation |