Cargando…
Which diagnostic tests are most useful in a chest pain unit protocol?
BACKGROUND: The chest pain unit (CPU) provides rapid diagnostic assessment for patients with acute, undifferentiated chest pain, using a combination of electrocardiographic (ECG) recording, biochemical markers and provocative cardiac testing. We aimed to identify which elements of a CPU protocol wer...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2005
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1201136/ https://www.ncbi.nlm.nih.gov/pubmed/16122380 http://dx.doi.org/10.1186/1471-227X-5-6 |
_version_ | 1782124889965068288 |
---|---|
author | Goodacre, Steve Locker, Thomas Arnold, Jane Angelini, Karen Morris, Francis |
author_facet | Goodacre, Steve Locker, Thomas Arnold, Jane Angelini, Karen Morris, Francis |
author_sort | Goodacre, Steve |
collection | PubMed |
description | BACKGROUND: The chest pain unit (CPU) provides rapid diagnostic assessment for patients with acute, undifferentiated chest pain, using a combination of electrocardiographic (ECG) recording, biochemical markers and provocative cardiac testing. We aimed to identify which elements of a CPU protocol were most diagnostically and prognostically useful. METHODS: The Northern General Hospital CPU uses 2–6 hours of serial ECG / ST segment monitoring, CK-MB(mass) on arrival and at least two hours later, troponin T at least six hours after worst pain and exercise treadmill testing. Data were prospectively collected over an eighteen-month period from patients managed on the CPU. Patients discharged after CPU assessment were invited to attend a follow-up appointment 72 hours later for ECG and troponin T measurement. Hospital records of all patients were reviewed to identify adverse cardiac events over the subsequent six months. Diagnostic accuracy of each test was estimated by calculating sensitivity and specificity for: 1) acute coronary syndrome (ACS) with clinical myocardial infarction and 2) ACS with myocyte necrosis. Prognostic value was estimated by calculating the relative risk of an adverse cardiac event following a positive result. RESULTS: Of the 706 patients, 30 (4.2%) were diagnosed as ACS with myocardial infarction, 30 (4.2%) as ACS with myocyte necrosis, and 32 (4.5%) suffered an adverse cardiac event. Sensitivities for ACS with myocardial infarction and myocyte necrosis respectively were: serial ECG / ST segment monitoring 33% and 23%; CK-MB(mass) 96% and 63%; troponin T (using 0.03 ng/ml threshold) 96% and 90%. The only test that added useful prognostic information was exercise treadmill testing (relative risk 6 for cardiac death, non-fatal myocardial infarction or arrhythmia over six months). CONCLUSION: Serial ECG / ST monitoring, as used in our protocol, adds little diagnostic or prognostic value in patients with a normal or non-diagnostic initial ECG. CK-MB(mass) can rule out ACS with clinical myocardial infarction but not myocyte necrosis(defined as a troponin elevation without myocardial infarction). Using a low threshold for positivity for troponin T improves sensitivity of this test for myocardial infarction and myocardial necrosis. Exercise treadmill testing predicts subsequent adverse cardiac events. |
format | Text |
id | pubmed-1201136 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2005 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-12011362005-09-10 Which diagnostic tests are most useful in a chest pain unit protocol? Goodacre, Steve Locker, Thomas Arnold, Jane Angelini, Karen Morris, Francis BMC Emerg Med Research Article BACKGROUND: The chest pain unit (CPU) provides rapid diagnostic assessment for patients with acute, undifferentiated chest pain, using a combination of electrocardiographic (ECG) recording, biochemical markers and provocative cardiac testing. We aimed to identify which elements of a CPU protocol were most diagnostically and prognostically useful. METHODS: The Northern General Hospital CPU uses 2–6 hours of serial ECG / ST segment monitoring, CK-MB(mass) on arrival and at least two hours later, troponin T at least six hours after worst pain and exercise treadmill testing. Data were prospectively collected over an eighteen-month period from patients managed on the CPU. Patients discharged after CPU assessment were invited to attend a follow-up appointment 72 hours later for ECG and troponin T measurement. Hospital records of all patients were reviewed to identify adverse cardiac events over the subsequent six months. Diagnostic accuracy of each test was estimated by calculating sensitivity and specificity for: 1) acute coronary syndrome (ACS) with clinical myocardial infarction and 2) ACS with myocyte necrosis. Prognostic value was estimated by calculating the relative risk of an adverse cardiac event following a positive result. RESULTS: Of the 706 patients, 30 (4.2%) were diagnosed as ACS with myocardial infarction, 30 (4.2%) as ACS with myocyte necrosis, and 32 (4.5%) suffered an adverse cardiac event. Sensitivities for ACS with myocardial infarction and myocyte necrosis respectively were: serial ECG / ST segment monitoring 33% and 23%; CK-MB(mass) 96% and 63%; troponin T (using 0.03 ng/ml threshold) 96% and 90%. The only test that added useful prognostic information was exercise treadmill testing (relative risk 6 for cardiac death, non-fatal myocardial infarction or arrhythmia over six months). CONCLUSION: Serial ECG / ST monitoring, as used in our protocol, adds little diagnostic or prognostic value in patients with a normal or non-diagnostic initial ECG. CK-MB(mass) can rule out ACS with clinical myocardial infarction but not myocyte necrosis(defined as a troponin elevation without myocardial infarction). Using a low threshold for positivity for troponin T improves sensitivity of this test for myocardial infarction and myocardial necrosis. Exercise treadmill testing predicts subsequent adverse cardiac events. BioMed Central 2005-08-25 /pmc/articles/PMC1201136/ /pubmed/16122380 http://dx.doi.org/10.1186/1471-227X-5-6 Text en Copyright © 2005 Goodacre et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Goodacre, Steve Locker, Thomas Arnold, Jane Angelini, Karen Morris, Francis Which diagnostic tests are most useful in a chest pain unit protocol? |
title | Which diagnostic tests are most useful in a chest pain unit protocol? |
title_full | Which diagnostic tests are most useful in a chest pain unit protocol? |
title_fullStr | Which diagnostic tests are most useful in a chest pain unit protocol? |
title_full_unstemmed | Which diagnostic tests are most useful in a chest pain unit protocol? |
title_short | Which diagnostic tests are most useful in a chest pain unit protocol? |
title_sort | which diagnostic tests are most useful in a chest pain unit protocol? |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1201136/ https://www.ncbi.nlm.nih.gov/pubmed/16122380 http://dx.doi.org/10.1186/1471-227X-5-6 |
work_keys_str_mv | AT goodacresteve whichdiagnostictestsaremostusefulinachestpainunitprotocol AT lockerthomas whichdiagnostictestsaremostusefulinachestpainunitprotocol AT arnoldjane whichdiagnostictestsaremostusefulinachestpainunitprotocol AT angelinikaren whichdiagnostictestsaremostusefulinachestpainunitprotocol AT morrisfrancis whichdiagnostictestsaremostusefulinachestpainunitprotocol |