Cargando…
Transcriptional repression of human cad gene by hypoxia inducible factor-1α
De novo biosynthesis of pyrimidine nucleotides provides essential precursors for DNA synthesis and cell proliferation. The first three steps of de novo pyrimidine biosynthesis are catalyzed by a multifunctional enzyme known as CAD (carbamoyl phosphate synthetase-aspartate carbamoyltransferase-dihydr...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2005
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1214551/ https://www.ncbi.nlm.nih.gov/pubmed/16155188 http://dx.doi.org/10.1093/nar/gki839 |
Sumario: | De novo biosynthesis of pyrimidine nucleotides provides essential precursors for DNA synthesis and cell proliferation. The first three steps of de novo pyrimidine biosynthesis are catalyzed by a multifunctional enzyme known as CAD (carbamoyl phosphate synthetase-aspartate carbamoyltransferase-dihydroorotase). In this work, a decrease in CAD expression is detected in numerous cell lines and primary culture human stromal cells incubated under hypoxia or desferrioxamine (DFO)-induced HIF-1α accumulation. A putative hypoxia response element (HRE) binding matrix is identified by analyzing human cad-gene promoter using a bioinformatic approach. Promoter activity assays, using constructs harboring the cad promoter (−710/+122) and the −67/HRE fragment (25-bases), respectively, demonstrate the suppression of reporter-gene expression under hypoxia. Suppression of cad-promoter activity is substantiated by forced expression of wild-type HIF-1α but abolished by overexpression of dominant-negative HIF-1α. A chromatin immunoprecipitation assay provides further evidence that HIF-1α binds to the cad promoter in vivo. These data demonstrate that the cad-gene expression is repressed by HIF-1α, which represents a functional link between hypoxia and cell-cycle arrest. |
---|