Cargando…
On the number of founding germ cells in humans
BACKGROUND: The number of founding germ cells (FGCs) in mammals is of fundamental significance to the fidelity of gene transmission between generations, but estimates from various methods vary widely. In this paper we obtain a new estimate for the value in humans by using a mathematical model of ger...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2005
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1215522/ https://www.ncbi.nlm.nih.gov/pubmed/16120211 http://dx.doi.org/10.1186/1742-4682-2-32 |
_version_ | 1782124966802620416 |
---|---|
author | Zheng, Chang-Jiang Luebeck, E Georg Byers, Breck Moolgavkar, Suresh H |
author_facet | Zheng, Chang-Jiang Luebeck, E Georg Byers, Breck Moolgavkar, Suresh H |
author_sort | Zheng, Chang-Jiang |
collection | PubMed |
description | BACKGROUND: The number of founding germ cells (FGCs) in mammals is of fundamental significance to the fidelity of gene transmission between generations, but estimates from various methods vary widely. In this paper we obtain a new estimate for the value in humans by using a mathematical model of germ cell development that depends on available oocyte counts for adult women. RESULTS: The germline-development model derives from the assumption that oogonial proliferation in the embryonic stage starts with a founding cells at t = 0 and that the subsequent proliferation can be defined as a simple stochastic birth process. It follows that the population size X(t) at the end of germline expansion (around the 5(th )month of pregnancy in humans; t = 0.42 years) is a random variable with a negative binomial distribution. A formula based on the expectation and variance of this random variable yields a moment-based estimate of a that is insensitive to the progressive reduction in oocyte numbers due to their utilization and apoptosis at later stages of life. In addition, we describe an algorithm for computing the maximum likelihood estimation of the FGC population size (a), as well as the rates of oogonial division and loss to apoptosis. Utilizing both of these approaches to evaluate available oocyte-counting data, we have obtained an estimate of a = 2 – 3 for Homo sapiens. CONCLUSION: The estimated number of founding germ cells in humans corresponds well with values previously derived from chimerical or mosaic mouse data. These findings suggest that the large variation in oocyte numbers between individual women is consistent with a smaller founding germ cell population size than has been estimated by cytological analyses. |
format | Text |
id | pubmed-1215522 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2005 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-12155222005-09-17 On the number of founding germ cells in humans Zheng, Chang-Jiang Luebeck, E Georg Byers, Breck Moolgavkar, Suresh H Theor Biol Med Model Research BACKGROUND: The number of founding germ cells (FGCs) in mammals is of fundamental significance to the fidelity of gene transmission between generations, but estimates from various methods vary widely. In this paper we obtain a new estimate for the value in humans by using a mathematical model of germ cell development that depends on available oocyte counts for adult women. RESULTS: The germline-development model derives from the assumption that oogonial proliferation in the embryonic stage starts with a founding cells at t = 0 and that the subsequent proliferation can be defined as a simple stochastic birth process. It follows that the population size X(t) at the end of germline expansion (around the 5(th )month of pregnancy in humans; t = 0.42 years) is a random variable with a negative binomial distribution. A formula based on the expectation and variance of this random variable yields a moment-based estimate of a that is insensitive to the progressive reduction in oocyte numbers due to their utilization and apoptosis at later stages of life. In addition, we describe an algorithm for computing the maximum likelihood estimation of the FGC population size (a), as well as the rates of oogonial division and loss to apoptosis. Utilizing both of these approaches to evaluate available oocyte-counting data, we have obtained an estimate of a = 2 – 3 for Homo sapiens. CONCLUSION: The estimated number of founding germ cells in humans corresponds well with values previously derived from chimerical or mosaic mouse data. These findings suggest that the large variation in oocyte numbers between individual women is consistent with a smaller founding germ cell population size than has been estimated by cytological analyses. BioMed Central 2005-08-24 /pmc/articles/PMC1215522/ /pubmed/16120211 http://dx.doi.org/10.1186/1742-4682-2-32 Text en Copyright © 2005 Zheng et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Zheng, Chang-Jiang Luebeck, E Georg Byers, Breck Moolgavkar, Suresh H On the number of founding germ cells in humans |
title | On the number of founding germ cells in humans |
title_full | On the number of founding germ cells in humans |
title_fullStr | On the number of founding germ cells in humans |
title_full_unstemmed | On the number of founding germ cells in humans |
title_short | On the number of founding germ cells in humans |
title_sort | on the number of founding germ cells in humans |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1215522/ https://www.ncbi.nlm.nih.gov/pubmed/16120211 http://dx.doi.org/10.1186/1742-4682-2-32 |
work_keys_str_mv | AT zhengchangjiang onthenumberoffoundinggermcellsinhumans AT luebeckegeorg onthenumberoffoundinggermcellsinhumans AT byersbreck onthenumberoffoundinggermcellsinhumans AT moolgavkarsureshh onthenumberoffoundinggermcellsinhumans |