Cargando…
Fluorescence-Activated Cell Sorting of EGFP-Labeled Neural Crest Cells From Murine Embryonic Craniofacial Tissue
During the early stages of embryogenesis, pluripotent neural crest cells (NCC) are known to migrate from the neural folds to populate multiple target sites in the embryo where they differentiate into various derivatives, including cartilage, bone, connective tissue, melanocytes, glia, and neurons of...
Autores principales: | , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2005
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1224702/ https://www.ncbi.nlm.nih.gov/pubmed/16192680 http://dx.doi.org/10.1155/JBB.2005.232 |
_version_ | 1782124975355854848 |
---|---|
author | Singh, Saurabh Bhattacherjee, Vasker Mukhopadhyay, Partha Worth, Christopher A. Wellhausen, Samuel R. Warner, Courtney P. Greene, Robert M. Pisano, M. Michele |
author_facet | Singh, Saurabh Bhattacherjee, Vasker Mukhopadhyay, Partha Worth, Christopher A. Wellhausen, Samuel R. Warner, Courtney P. Greene, Robert M. Pisano, M. Michele |
author_sort | Singh, Saurabh |
collection | PubMed |
description | During the early stages of embryogenesis, pluripotent neural crest cells (NCC) are known to migrate from the neural folds to populate multiple target sites in the embryo where they differentiate into various derivatives, including cartilage, bone, connective tissue, melanocytes, glia, and neurons of the peripheral nervous system. The ability to obtain pure NCC populations is essential to enable molecular analyses of neural crest induction, migration, and/or differentiation. Crossing Wnt1-Cre and Z/EG transgenic mouse lines resulted in offspring in which the Wnt1-Cre transgene activated permanent EGFP expression only in NCC. The present report demonstrates a flow cytometric method to sort and isolate populations of EGFP-labeled NCC. The identity of the sorted neural crest cells was confirmed by assaying expression of known marker genes by TaqMan Quantitative Real-Time Polymerase Chain Reaction (QRT-PCR). The molecular strategy described in this report provides a means to extract intact RNA from a pure population of NCC thus enabling analysis of gene expression in a defined population of embryonic precursor cells critical to development. |
format | Text |
id | pubmed-1224702 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2005 |
publisher | Hindawi Publishing Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-12247022005-10-12 Fluorescence-Activated Cell Sorting of EGFP-Labeled Neural Crest Cells From Murine Embryonic Craniofacial Tissue Singh, Saurabh Bhattacherjee, Vasker Mukhopadhyay, Partha Worth, Christopher A. Wellhausen, Samuel R. Warner, Courtney P. Greene, Robert M. Pisano, M. Michele J Biomed Biotechnol Research Article During the early stages of embryogenesis, pluripotent neural crest cells (NCC) are known to migrate from the neural folds to populate multiple target sites in the embryo where they differentiate into various derivatives, including cartilage, bone, connective tissue, melanocytes, glia, and neurons of the peripheral nervous system. The ability to obtain pure NCC populations is essential to enable molecular analyses of neural crest induction, migration, and/or differentiation. Crossing Wnt1-Cre and Z/EG transgenic mouse lines resulted in offspring in which the Wnt1-Cre transgene activated permanent EGFP expression only in NCC. The present report demonstrates a flow cytometric method to sort and isolate populations of EGFP-labeled NCC. The identity of the sorted neural crest cells was confirmed by assaying expression of known marker genes by TaqMan Quantitative Real-Time Polymerase Chain Reaction (QRT-PCR). The molecular strategy described in this report provides a means to extract intact RNA from a pure population of NCC thus enabling analysis of gene expression in a defined population of embryonic precursor cells critical to development. Hindawi Publishing Corporation 2005 /pmc/articles/PMC1224702/ /pubmed/16192680 http://dx.doi.org/10.1155/JBB.2005.232 Text en Hindawi Publishing Corporation |
spellingShingle | Research Article Singh, Saurabh Bhattacherjee, Vasker Mukhopadhyay, Partha Worth, Christopher A. Wellhausen, Samuel R. Warner, Courtney P. Greene, Robert M. Pisano, M. Michele Fluorescence-Activated Cell Sorting of EGFP-Labeled Neural Crest Cells From Murine Embryonic Craniofacial Tissue |
title | Fluorescence-Activated Cell Sorting of EGFP-Labeled Neural Crest Cells From Murine Embryonic Craniofacial Tissue |
title_full | Fluorescence-Activated Cell Sorting of EGFP-Labeled Neural Crest Cells From Murine Embryonic Craniofacial Tissue |
title_fullStr | Fluorescence-Activated Cell Sorting of EGFP-Labeled Neural Crest Cells From Murine Embryonic Craniofacial Tissue |
title_full_unstemmed | Fluorescence-Activated Cell Sorting of EGFP-Labeled Neural Crest Cells From Murine Embryonic Craniofacial Tissue |
title_short | Fluorescence-Activated Cell Sorting of EGFP-Labeled Neural Crest Cells From Murine Embryonic Craniofacial Tissue |
title_sort | fluorescence-activated cell sorting of egfp-labeled neural crest cells from murine embryonic craniofacial tissue |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1224702/ https://www.ncbi.nlm.nih.gov/pubmed/16192680 http://dx.doi.org/10.1155/JBB.2005.232 |
work_keys_str_mv | AT singhsaurabh fluorescenceactivatedcellsortingofegfplabeledneuralcrestcellsfrommurineembryoniccraniofacialtissue AT bhattacherjeevasker fluorescenceactivatedcellsortingofegfplabeledneuralcrestcellsfrommurineembryoniccraniofacialtissue AT mukhopadhyaypartha fluorescenceactivatedcellsortingofegfplabeledneuralcrestcellsfrommurineembryoniccraniofacialtissue AT worthchristophera fluorescenceactivatedcellsortingofegfplabeledneuralcrestcellsfrommurineembryoniccraniofacialtissue AT wellhausensamuelr fluorescenceactivatedcellsortingofegfplabeledneuralcrestcellsfrommurineembryoniccraniofacialtissue AT warnercourtneyp fluorescenceactivatedcellsortingofegfplabeledneuralcrestcellsfrommurineembryoniccraniofacialtissue AT greenerobertm fluorescenceactivatedcellsortingofegfplabeledneuralcrestcellsfrommurineembryoniccraniofacialtissue AT pisanommichele fluorescenceactivatedcellsortingofegfplabeledneuralcrestcellsfrommurineembryoniccraniofacialtissue |