Cargando…
Aggregation as bacterial inclusion bodies does not imply inactivation of enzymes and fluorescent proteins
BACKGROUND: Many enzymes of industrial interest are not in the market since they are bio-produced as bacterial inclusion bodies, believed to be biologically inert aggregates of insoluble protein. RESULTS: By using two structurally and functionally different model enzymes and two fluorescent proteins...
Autores principales: | , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2005
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1224866/ https://www.ncbi.nlm.nih.gov/pubmed/16156893 http://dx.doi.org/10.1186/1475-2859-4-27 |
Sumario: | BACKGROUND: Many enzymes of industrial interest are not in the market since they are bio-produced as bacterial inclusion bodies, believed to be biologically inert aggregates of insoluble protein. RESULTS: By using two structurally and functionally different model enzymes and two fluorescent proteins we show that physiological aggregation in bacteria might only result in a moderate loss of biological activity and that inclusion bodies can be used in reaction mixtures for efficient catalysis. CONCLUSION: This observation offers promising possibilities for the exploration of inclusion bodies as catalysts for industrial purposes, without any previous protein-refolding step. |
---|