Cargando…
Data quality in predictive toxicology: identification of chemical structures and calculation of chemical properties.
Every technique for toxicity prediction and for the detection of structure-activity relationships relies on the accurate estimation and representation of chemical and toxicologic properties. In this paper we discuss the potential sources of errors associated with the identification of compounds, the...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
2000
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1240158/ https://www.ncbi.nlm.nih.gov/pubmed/11102292 |
_version_ | 1782125050968670208 |
---|---|
author | Helma, C Kramer, S Pfahringer, B Gottmann, E |
author_facet | Helma, C Kramer, S Pfahringer, B Gottmann, E |
author_sort | Helma, C |
collection | PubMed |
description | Every technique for toxicity prediction and for the detection of structure-activity relationships relies on the accurate estimation and representation of chemical and toxicologic properties. In this paper we discuss the potential sources of errors associated with the identification of compounds, the representation of their structures, and the calculation of chemical descriptors. It is based on a case study where machine learning techniques were applied to data from noncongeneric compounds and a complex toxicologic end point (carcinogenicity). We propose methods applicable to the routine quality control of large chemical datasets, but our main intention is to raise awareness about this topic and to open a discussion about quality assurance in predictive toxicology. The accuracy and reproducibility of toxicity data will be reported in another paper. |
format | Text |
id | pubmed-1240158 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2000 |
record_format | MEDLINE/PubMed |
spelling | pubmed-12401582005-11-08 Data quality in predictive toxicology: identification of chemical structures and calculation of chemical properties. Helma, C Kramer, S Pfahringer, B Gottmann, E Environ Health Perspect Research Article Every technique for toxicity prediction and for the detection of structure-activity relationships relies on the accurate estimation and representation of chemical and toxicologic properties. In this paper we discuss the potential sources of errors associated with the identification of compounds, the representation of their structures, and the calculation of chemical descriptors. It is based on a case study where machine learning techniques were applied to data from noncongeneric compounds and a complex toxicologic end point (carcinogenicity). We propose methods applicable to the routine quality control of large chemical datasets, but our main intention is to raise awareness about this topic and to open a discussion about quality assurance in predictive toxicology. The accuracy and reproducibility of toxicity data will be reported in another paper. 2000-11 /pmc/articles/PMC1240158/ /pubmed/11102292 Text en |
spellingShingle | Research Article Helma, C Kramer, S Pfahringer, B Gottmann, E Data quality in predictive toxicology: identification of chemical structures and calculation of chemical properties. |
title | Data quality in predictive toxicology: identification of chemical structures and calculation of chemical properties. |
title_full | Data quality in predictive toxicology: identification of chemical structures and calculation of chemical properties. |
title_fullStr | Data quality in predictive toxicology: identification of chemical structures and calculation of chemical properties. |
title_full_unstemmed | Data quality in predictive toxicology: identification of chemical structures and calculation of chemical properties. |
title_short | Data quality in predictive toxicology: identification of chemical structures and calculation of chemical properties. |
title_sort | data quality in predictive toxicology: identification of chemical structures and calculation of chemical properties. |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1240158/ https://www.ncbi.nlm.nih.gov/pubmed/11102292 |
work_keys_str_mv | AT helmac dataqualityinpredictivetoxicologyidentificationofchemicalstructuresandcalculationofchemicalproperties AT kramers dataqualityinpredictivetoxicologyidentificationofchemicalstructuresandcalculationofchemicalproperties AT pfahringerb dataqualityinpredictivetoxicologyidentificationofchemicalstructuresandcalculationofchemicalproperties AT gottmanne dataqualityinpredictivetoxicologyidentificationofchemicalstructuresandcalculationofchemicalproperties |