Cargando…

In vitro estrogenicity of polybrominated diphenyl ethers, hydroxylated PDBEs, and polybrominated bisphenol A compounds.

Polybrominated diphenyl ethers (PBDEs) are used in large quantities as additive flame retardants in plastics and textile materials. PBDEs are persistent compounds and have been detected in wildlife and in human adipose tissue and plasma samples. In this study, we investigated the (anti)estrogenic po...

Descripción completa

Detalles Bibliográficos
Autores principales: Meerts, I A, Letcher, R J, Hoving, S, Marsh, G, Bergman, A, Lemmen, J G, van der Burg, B, Brouwer, A
Formato: Texto
Lenguaje:English
Publicado: 2001
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1240281/
https://www.ncbi.nlm.nih.gov/pubmed/11335189
_version_ 1782125086805852160
author Meerts, I A
Letcher, R J
Hoving, S
Marsh, G
Bergman, A
Lemmen, J G
van der Burg, B
Brouwer, A
author_facet Meerts, I A
Letcher, R J
Hoving, S
Marsh, G
Bergman, A
Lemmen, J G
van der Burg, B
Brouwer, A
author_sort Meerts, I A
collection PubMed
description Polybrominated diphenyl ethers (PBDEs) are used in large quantities as additive flame retardants in plastics and textile materials. PBDEs are persistent compounds and have been detected in wildlife and in human adipose tissue and plasma samples. In this study, we investigated the (anti)estrogenic potencies of several PBDE congeners, three hydroxylated PBDEs (HO-PBDEs), and differently brominated bisphenol A compounds in three different cell line assays based on estrogen receptor (ER)-dependent luciferase reporter gene expression. In human T47D breast cancer cells stably transfected with an estrogen-responsive luciferase reporter gene construct (pEREtata-Luc), 11 PBDEs showed estrogenic potencies, with concentrations leading to 50% induction (EC(50)) varying from 2.5 to 7.3 microM. The luciferase induction of the most potent HO-PBDE [2-bromo-4-(2,4,6-tribromophenoxy)phenol] exceeded that of estradiol (E(2)), though at concentrations 50,000 times higher. As expected, brominated bisphenol A compounds with the lowest degree of bromination showed highest estrogenic potencies (EC(50) values of 0.5 microM for 3-monobromobisphenol A). In an ER alpha-specific, stably transfected human embryonic kidney cell line (293-ER alpha-Luc), the HO-PBDE 4-(2,4,6-tribromophenoxy)phenol was a highly potent estrogen with an EC(50) < 0.1 microM and a maximum 35- to 40-fold induction, which was similar to E(2). In an analogous ER beta-specific 293-ER betas-Luc cell line, the agonistic potency of the 4-(2,4,6-tribromophenoxy)phenol was much lower (maximum 50% induction compared to E(2)), but EC(50) values were comparable. These results indicate that several pure PBDE congeners, but especially HO-PBDEs and brominated bisphenol A-analogs, are agonists of both ER alpha and ER beta receptors, thus stimulating ER-mediated luciferase induction in vitro. These data also suggest that in vivo metabolism of PBDEs may produce more potent pseudoestrogens.
format Text
id pubmed-1240281
institution National Center for Biotechnology Information
language English
publishDate 2001
record_format MEDLINE/PubMed
spelling pubmed-12402812005-11-08 In vitro estrogenicity of polybrominated diphenyl ethers, hydroxylated PDBEs, and polybrominated bisphenol A compounds. Meerts, I A Letcher, R J Hoving, S Marsh, G Bergman, A Lemmen, J G van der Burg, B Brouwer, A Environ Health Perspect Research Article Polybrominated diphenyl ethers (PBDEs) are used in large quantities as additive flame retardants in plastics and textile materials. PBDEs are persistent compounds and have been detected in wildlife and in human adipose tissue and plasma samples. In this study, we investigated the (anti)estrogenic potencies of several PBDE congeners, three hydroxylated PBDEs (HO-PBDEs), and differently brominated bisphenol A compounds in three different cell line assays based on estrogen receptor (ER)-dependent luciferase reporter gene expression. In human T47D breast cancer cells stably transfected with an estrogen-responsive luciferase reporter gene construct (pEREtata-Luc), 11 PBDEs showed estrogenic potencies, with concentrations leading to 50% induction (EC(50)) varying from 2.5 to 7.3 microM. The luciferase induction of the most potent HO-PBDE [2-bromo-4-(2,4,6-tribromophenoxy)phenol] exceeded that of estradiol (E(2)), though at concentrations 50,000 times higher. As expected, brominated bisphenol A compounds with the lowest degree of bromination showed highest estrogenic potencies (EC(50) values of 0.5 microM for 3-monobromobisphenol A). In an ER alpha-specific, stably transfected human embryonic kidney cell line (293-ER alpha-Luc), the HO-PBDE 4-(2,4,6-tribromophenoxy)phenol was a highly potent estrogen with an EC(50) < 0.1 microM and a maximum 35- to 40-fold induction, which was similar to E(2). In an analogous ER beta-specific 293-ER betas-Luc cell line, the agonistic potency of the 4-(2,4,6-tribromophenoxy)phenol was much lower (maximum 50% induction compared to E(2)), but EC(50) values were comparable. These results indicate that several pure PBDE congeners, but especially HO-PBDEs and brominated bisphenol A-analogs, are agonists of both ER alpha and ER beta receptors, thus stimulating ER-mediated luciferase induction in vitro. These data also suggest that in vivo metabolism of PBDEs may produce more potent pseudoestrogens. 2001-04 /pmc/articles/PMC1240281/ /pubmed/11335189 Text en
spellingShingle Research Article
Meerts, I A
Letcher, R J
Hoving, S
Marsh, G
Bergman, A
Lemmen, J G
van der Burg, B
Brouwer, A
In vitro estrogenicity of polybrominated diphenyl ethers, hydroxylated PDBEs, and polybrominated bisphenol A compounds.
title In vitro estrogenicity of polybrominated diphenyl ethers, hydroxylated PDBEs, and polybrominated bisphenol A compounds.
title_full In vitro estrogenicity of polybrominated diphenyl ethers, hydroxylated PDBEs, and polybrominated bisphenol A compounds.
title_fullStr In vitro estrogenicity of polybrominated diphenyl ethers, hydroxylated PDBEs, and polybrominated bisphenol A compounds.
title_full_unstemmed In vitro estrogenicity of polybrominated diphenyl ethers, hydroxylated PDBEs, and polybrominated bisphenol A compounds.
title_short In vitro estrogenicity of polybrominated diphenyl ethers, hydroxylated PDBEs, and polybrominated bisphenol A compounds.
title_sort in vitro estrogenicity of polybrominated diphenyl ethers, hydroxylated pdbes, and polybrominated bisphenol a compounds.
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1240281/
https://www.ncbi.nlm.nih.gov/pubmed/11335189
work_keys_str_mv AT meertsia invitroestrogenicityofpolybrominateddiphenylethershydroxylatedpdbesandpolybrominatedbisphenolacompounds
AT letcherrj invitroestrogenicityofpolybrominateddiphenylethershydroxylatedpdbesandpolybrominatedbisphenolacompounds
AT hovings invitroestrogenicityofpolybrominateddiphenylethershydroxylatedpdbesandpolybrominatedbisphenolacompounds
AT marshg invitroestrogenicityofpolybrominateddiphenylethershydroxylatedpdbesandpolybrominatedbisphenolacompounds
AT bergmana invitroestrogenicityofpolybrominateddiphenylethershydroxylatedpdbesandpolybrominatedbisphenolacompounds
AT lemmenjg invitroestrogenicityofpolybrominateddiphenylethershydroxylatedpdbesandpolybrominatedbisphenolacompounds
AT vanderburgb invitroestrogenicityofpolybrominateddiphenylethershydroxylatedpdbesandpolybrominatedbisphenolacompounds
AT brouwera invitroestrogenicityofpolybrominateddiphenylethershydroxylatedpdbesandpolybrominatedbisphenolacompounds