Cargando…

Differential effects of two lots of aroclor 1254 on enzyme induction, thyroid hormones, and oxidative stress.

Aroclor 1254 is a commercial mixture of polychlorinated biphenyls (PCBs), which is defined as being 54% chlorine by weight. However, the congener composition varies from lot to lot. Two lots which have been used in toxicity studies, 124-191 and 6024 (AccuStandard), were analyzed for their congener c...

Descripción completa

Detalles Bibliográficos
Autores principales: Burgin, D E, Diliberto, J J, Derr-Yellin, E C, Kannan, N, Kodavanti, P R, Birnbaum, L S
Formato: Texto
Lenguaje:English
Publicado: 2001
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1240478/
https://www.ncbi.nlm.nih.gov/pubmed/11713002
_version_ 1782125145119260672
author Burgin, D E
Diliberto, J J
Derr-Yellin, E C
Kannan, N
Kodavanti, P R
Birnbaum, L S
author_facet Burgin, D E
Diliberto, J J
Derr-Yellin, E C
Kannan, N
Kodavanti, P R
Birnbaum, L S
author_sort Burgin, D E
collection PubMed
description Aroclor 1254 is a commercial mixture of polychlorinated biphenyls (PCBs), which is defined as being 54% chlorine by weight. However, the congener composition varies from lot to lot. Two lots which have been used in toxicity studies, 124-191 and 6024 (AccuStandard), were analyzed for their congener composition. Lot 6024 has approximately 10 times the dioxin toxic equivalents (TEQ) of lot 124-191. The purpose of this study was to determine if the difference in the TEQ of the two lots explains the different in vivo responses seen on a weight basis. Male Long-Evans rats (70 days old) were treated orally with a single dose of 0-1,000 mg/kg of each lot. Hepatic ethoxy-, methoxy-, and pentoxyresorufin O-deethylase (EROD, MROD, and PROD, respectively) activities as well as serum thyroxine (T(4)) concentrations and measures of oxidative stress were determined 4 days after treatment. Results, on a weight basis, indicate that lot 6024 led to a greater induction of EROD, MROD, and PROD but not total T(4) reduction. The differences in TEQ between the lots explained the differential induction of EROD and MROD but did not account for the induction of PROD nor decreases in T(4). PROD induction is not due to dioxin-like congeners, whereas the decrease in serum T(4) levels may involve multiple mechanisms. Effects on the antioxidants ascorbic acid and uric acid were seen only at the highest mass dose for both lots and were not explained by the difference in TEQ. These results illustrate that the differences in the TEQ explain the differences in the strict dioxin-like effects (EROD, MROD induction), but the non-dioxin-like congeners cause other effects that are not associated with the aryl hydrocarbon receptor (e.g., PROD). In addition, supra-additive effects also occur in the mixture (T(4), oxidative stress). Thus, current results demonstrate that overall toxicity cannot be predicted on the basis of the TEQ values. It is also critical that the lot number is reported in studies conducted with Aroclor 1254 because the congener composition and therefore the effects observed can be very different.
format Text
id pubmed-1240478
institution National Center for Biotechnology Information
language English
publishDate 2001
record_format MEDLINE/PubMed
spelling pubmed-12404782005-11-08 Differential effects of two lots of aroclor 1254 on enzyme induction, thyroid hormones, and oxidative stress. Burgin, D E Diliberto, J J Derr-Yellin, E C Kannan, N Kodavanti, P R Birnbaum, L S Environ Health Perspect Research Article Aroclor 1254 is a commercial mixture of polychlorinated biphenyls (PCBs), which is defined as being 54% chlorine by weight. However, the congener composition varies from lot to lot. Two lots which have been used in toxicity studies, 124-191 and 6024 (AccuStandard), were analyzed for their congener composition. Lot 6024 has approximately 10 times the dioxin toxic equivalents (TEQ) of lot 124-191. The purpose of this study was to determine if the difference in the TEQ of the two lots explains the different in vivo responses seen on a weight basis. Male Long-Evans rats (70 days old) were treated orally with a single dose of 0-1,000 mg/kg of each lot. Hepatic ethoxy-, methoxy-, and pentoxyresorufin O-deethylase (EROD, MROD, and PROD, respectively) activities as well as serum thyroxine (T(4)) concentrations and measures of oxidative stress were determined 4 days after treatment. Results, on a weight basis, indicate that lot 6024 led to a greater induction of EROD, MROD, and PROD but not total T(4) reduction. The differences in TEQ between the lots explained the differential induction of EROD and MROD but did not account for the induction of PROD nor decreases in T(4). PROD induction is not due to dioxin-like congeners, whereas the decrease in serum T(4) levels may involve multiple mechanisms. Effects on the antioxidants ascorbic acid and uric acid were seen only at the highest mass dose for both lots and were not explained by the difference in TEQ. These results illustrate that the differences in the TEQ explain the differences in the strict dioxin-like effects (EROD, MROD induction), but the non-dioxin-like congeners cause other effects that are not associated with the aryl hydrocarbon receptor (e.g., PROD). In addition, supra-additive effects also occur in the mixture (T(4), oxidative stress). Thus, current results demonstrate that overall toxicity cannot be predicted on the basis of the TEQ values. It is also critical that the lot number is reported in studies conducted with Aroclor 1254 because the congener composition and therefore the effects observed can be very different. 2001-11 /pmc/articles/PMC1240478/ /pubmed/11713002 Text en
spellingShingle Research Article
Burgin, D E
Diliberto, J J
Derr-Yellin, E C
Kannan, N
Kodavanti, P R
Birnbaum, L S
Differential effects of two lots of aroclor 1254 on enzyme induction, thyroid hormones, and oxidative stress.
title Differential effects of two lots of aroclor 1254 on enzyme induction, thyroid hormones, and oxidative stress.
title_full Differential effects of two lots of aroclor 1254 on enzyme induction, thyroid hormones, and oxidative stress.
title_fullStr Differential effects of two lots of aroclor 1254 on enzyme induction, thyroid hormones, and oxidative stress.
title_full_unstemmed Differential effects of two lots of aroclor 1254 on enzyme induction, thyroid hormones, and oxidative stress.
title_short Differential effects of two lots of aroclor 1254 on enzyme induction, thyroid hormones, and oxidative stress.
title_sort differential effects of two lots of aroclor 1254 on enzyme induction, thyroid hormones, and oxidative stress.
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1240478/
https://www.ncbi.nlm.nih.gov/pubmed/11713002
work_keys_str_mv AT burginde differentialeffectsoftwolotsofaroclor1254onenzymeinductionthyroidhormonesandoxidativestress
AT dilibertojj differentialeffectsoftwolotsofaroclor1254onenzymeinductionthyroidhormonesandoxidativestress
AT derryellinec differentialeffectsoftwolotsofaroclor1254onenzymeinductionthyroidhormonesandoxidativestress
AT kannann differentialeffectsoftwolotsofaroclor1254onenzymeinductionthyroidhormonesandoxidativestress
AT kodavantipr differentialeffectsoftwolotsofaroclor1254onenzymeinductionthyroidhormonesandoxidativestress
AT birnbaumls differentialeffectsoftwolotsofaroclor1254onenzymeinductionthyroidhormonesandoxidativestress