Cargando…
Methods to identify and characterize developmental neurotoxicity for human health risk assessment. III: pharmacokinetic and pharmacodynamic considerations.
We review pharmacokinetic and pharmacodynamic factors that should be considered in the design and interpretation of developmental neurotoxicity studies. Toxicologic effects on the developing nervous system depend on the delivered dose, exposure duration, and developmental stage at which exposure occ...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
2001
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1240547/ https://www.ncbi.nlm.nih.gov/pubmed/11250810 |
_version_ | 1782125164111069184 |
---|---|
author | Dorman, D C Allen, S L Byczkowski, J Z Claudio, L Fisher, J E Fisher, J W Harry, G J Li, A A Makris, S L Padilla, S Sultatos, L G Mileson, B E |
author_facet | Dorman, D C Allen, S L Byczkowski, J Z Claudio, L Fisher, J E Fisher, J W Harry, G J Li, A A Makris, S L Padilla, S Sultatos, L G Mileson, B E |
author_sort | Dorman, D C |
collection | PubMed |
description | We review pharmacokinetic and pharmacodynamic factors that should be considered in the design and interpretation of developmental neurotoxicity studies. Toxicologic effects on the developing nervous system depend on the delivered dose, exposure duration, and developmental stage at which exposure occurred. Several pharmacokinetic processes (absorption, distribution, metabolism, and excretion) govern chemical disposition within the dam and the nervous system of the offspring. In addition, unique physical features such as the presence or absence of a placental barrier and the gradual development of the blood--brain barrier influence chemical disposition and thus modulate developmental neurotoxicity. Neonatal exposure may depend on maternal pharmacokinetic processes and transfer of the xenobiotic through the milk, although direct exposure may occur through other routes (e.g., inhalation). Measurement of the xenobiotic in milk and evaluation of biomarkers of exposure or effect following exposure can confirm or characterize neonatal exposure. Physiologically based pharmacokinetic and pharmacodynamic models that incorporate these and other determinants can estimate tissue dose and biologic response following in utero or neonatal exposure. These models can characterize dose--response relationships and improve extrapolation of results from animal studies to humans. In addition, pharmacologic data allow an experimenter to determine whether exposure to the test chemical is adequate, whether exposure occurs during critical periods of nervous system development, whether route and duration of exposure are appropriate, and whether developmental neurotoxicity can be differentiated from direct actions of the xenobiotic. |
format | Text |
id | pubmed-1240547 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2001 |
record_format | MEDLINE/PubMed |
spelling | pubmed-12405472005-11-08 Methods to identify and characterize developmental neurotoxicity for human health risk assessment. III: pharmacokinetic and pharmacodynamic considerations. Dorman, D C Allen, S L Byczkowski, J Z Claudio, L Fisher, J E Fisher, J W Harry, G J Li, A A Makris, S L Padilla, S Sultatos, L G Mileson, B E Environ Health Perspect Research Article We review pharmacokinetic and pharmacodynamic factors that should be considered in the design and interpretation of developmental neurotoxicity studies. Toxicologic effects on the developing nervous system depend on the delivered dose, exposure duration, and developmental stage at which exposure occurred. Several pharmacokinetic processes (absorption, distribution, metabolism, and excretion) govern chemical disposition within the dam and the nervous system of the offspring. In addition, unique physical features such as the presence or absence of a placental barrier and the gradual development of the blood--brain barrier influence chemical disposition and thus modulate developmental neurotoxicity. Neonatal exposure may depend on maternal pharmacokinetic processes and transfer of the xenobiotic through the milk, although direct exposure may occur through other routes (e.g., inhalation). Measurement of the xenobiotic in milk and evaluation of biomarkers of exposure or effect following exposure can confirm or characterize neonatal exposure. Physiologically based pharmacokinetic and pharmacodynamic models that incorporate these and other determinants can estimate tissue dose and biologic response following in utero or neonatal exposure. These models can characterize dose--response relationships and improve extrapolation of results from animal studies to humans. In addition, pharmacologic data allow an experimenter to determine whether exposure to the test chemical is adequate, whether exposure occurs during critical periods of nervous system development, whether route and duration of exposure are appropriate, and whether developmental neurotoxicity can be differentiated from direct actions of the xenobiotic. 2001-03 /pmc/articles/PMC1240547/ /pubmed/11250810 Text en |
spellingShingle | Research Article Dorman, D C Allen, S L Byczkowski, J Z Claudio, L Fisher, J E Fisher, J W Harry, G J Li, A A Makris, S L Padilla, S Sultatos, L G Mileson, B E Methods to identify and characterize developmental neurotoxicity for human health risk assessment. III: pharmacokinetic and pharmacodynamic considerations. |
title | Methods to identify and characterize developmental neurotoxicity for human health risk assessment. III: pharmacokinetic and pharmacodynamic considerations. |
title_full | Methods to identify and characterize developmental neurotoxicity for human health risk assessment. III: pharmacokinetic and pharmacodynamic considerations. |
title_fullStr | Methods to identify and characterize developmental neurotoxicity for human health risk assessment. III: pharmacokinetic and pharmacodynamic considerations. |
title_full_unstemmed | Methods to identify and characterize developmental neurotoxicity for human health risk assessment. III: pharmacokinetic and pharmacodynamic considerations. |
title_short | Methods to identify and characterize developmental neurotoxicity for human health risk assessment. III: pharmacokinetic and pharmacodynamic considerations. |
title_sort | methods to identify and characterize developmental neurotoxicity for human health risk assessment. iii: pharmacokinetic and pharmacodynamic considerations. |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1240547/ https://www.ncbi.nlm.nih.gov/pubmed/11250810 |
work_keys_str_mv | AT dormandc methodstoidentifyandcharacterizedevelopmentalneurotoxicityforhumanhealthriskassessmentiiipharmacokineticandpharmacodynamicconsiderations AT allensl methodstoidentifyandcharacterizedevelopmentalneurotoxicityforhumanhealthriskassessmentiiipharmacokineticandpharmacodynamicconsiderations AT byczkowskijz methodstoidentifyandcharacterizedevelopmentalneurotoxicityforhumanhealthriskassessmentiiipharmacokineticandpharmacodynamicconsiderations AT claudiol methodstoidentifyandcharacterizedevelopmentalneurotoxicityforhumanhealthriskassessmentiiipharmacokineticandpharmacodynamicconsiderations AT fisherje methodstoidentifyandcharacterizedevelopmentalneurotoxicityforhumanhealthriskassessmentiiipharmacokineticandpharmacodynamicconsiderations AT fisherjw methodstoidentifyandcharacterizedevelopmentalneurotoxicityforhumanhealthriskassessmentiiipharmacokineticandpharmacodynamicconsiderations AT harrygj methodstoidentifyandcharacterizedevelopmentalneurotoxicityforhumanhealthriskassessmentiiipharmacokineticandpharmacodynamicconsiderations AT liaa methodstoidentifyandcharacterizedevelopmentalneurotoxicityforhumanhealthriskassessmentiiipharmacokineticandpharmacodynamicconsiderations AT makrissl methodstoidentifyandcharacterizedevelopmentalneurotoxicityforhumanhealthriskassessmentiiipharmacokineticandpharmacodynamicconsiderations AT padillas methodstoidentifyandcharacterizedevelopmentalneurotoxicityforhumanhealthriskassessmentiiipharmacokineticandpharmacodynamicconsiderations AT sultatoslg methodstoidentifyandcharacterizedevelopmentalneurotoxicityforhumanhealthriskassessmentiiipharmacokineticandpharmacodynamicconsiderations AT milesonbe methodstoidentifyandcharacterizedevelopmentalneurotoxicityforhumanhealthriskassessmentiiipharmacokineticandpharmacodynamicconsiderations |