Cargando…

Aldrin and dieldrin: a review of research on their production, environmental deposition and fate, bioaccumulation, toxicology, and epidemiology in the United States.

In the last decade four international agreements have focused on a group of chemical substances known as persistent organic pollutants (POPs). Global agreement on the reduction and eventual elimination of these substances by banning their production and trade is a long-term goal. Negotiations for th...

Descripción completa

Detalles Bibliográficos
Autor principal: Jorgenson, J L
Formato: Texto
Lenguaje:English
Publicado: 2001
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1240548/
https://www.ncbi.nlm.nih.gov/pubmed/11250811
Descripción
Sumario:In the last decade four international agreements have focused on a group of chemical substances known as persistent organic pollutants (POPs). Global agreement on the reduction and eventual elimination of these substances by banning their production and trade is a long-term goal. Negotiations for these agreements have focused on the need to correlate data from scientists working on soil and water sampling and air pollution monitoring. Toxicologists and epidemiologists have focused on wildlife and human health effects and understanding patterns of disease requires better access to these data. In the last 20 years, substantial databases have been created and now are becoming available on the Internet. This review is a detailed examination of 2 of the 12 POPs, aldrin and dieldrin, and how scientific groups identify and measure their effects. It draws on research findings from a variety of environmental monitoring networks in the United States. An overview of the ecologic and health effects of aldrin and dieldrin provides examples of how to streamline some of the programs and improve access to mutually useful scientific data. The research groups are located in many government departments, universities, and private organizations. Identifying databases can provide an "information accelerator" useful to a larger audience and can help build better plant and animal research models across scientific fields.