Cargando…
Chemical contaminants in breast milk: time trends and regional variability.
Research on environmentally related chemical contaminants in breast milk spans several decades and dozens of countries. The ability to use this research as an environmental indicator is limited because of a lack of consistent protocols. Data on xenobiotics in breast milk are influenced by choices in...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
2002
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1240888/ https://www.ncbi.nlm.nih.gov/pubmed/12055065 |
Sumario: | Research on environmentally related chemical contaminants in breast milk spans several decades and dozens of countries. The ability to use this research as an environmental indicator is limited because of a lack of consistent protocols. Data on xenobiotics in breast milk are influenced by choices in sample selection, sample pooling, analysis, and reporting. In addition, most studies have focused only on a small panel of persistent organic pollutants, despite indications that a wide range of additional chemical contaminants may also enter breast milk. Despite these limitations, however, it is possible to draw some generalizations. In this paper we review available data on levels of organochlorine pesticides, polychlorinated biphenyls (PCBs), polychlorinated dibenzodioxins (PCDDs), polybrominated diphenyl ethers (PBDEs), metals, and solvents in breast milk. Examples drawn from around the world illustrate the available data and the patterns that have appeared in various areas over time. Over the past few decades, levels of the organochlorine pesticides, PCBs, and dioxins have declined in breast milk in countries where these chemicals have been banned or otherwise regulated. In contrast, the levels of PBDEs are rising. Regional differences in levels of xenobiotics in breast milk are related to historical and current local use patterns. Diet is a major factor that influences breast milk levels of persistent organic pollutants, with patterns in fish consumption playing a particularly significant role. Improved global breast milk monitoring programs would allow for more consistent data on trends over time, detection of new xenobiotics in breast milk, and identification of disproportionately exposed populations. |
---|