Cargando…

Effects of polychlorinated biphenyls on estrogen receptor-beta expression in the anteroventral periventricular nucleus.

Polychlorinated biphenyls (PCBs) can disrupt the reproductive axis, particularly when the exposure occurs during the vulnerable developmental periods. Some effects of environmental endocrine disruptors such as PCBs may be exerted through binding to estrogen receptors (ERs). In this study we examined...

Descripción completa

Detalles Bibliográficos
Autores principales: Salama, Jacklyn, Chakraborty, Tandra R, Ng, Laurie, Gore, Andrea C
Formato: Texto
Lenguaje:English
Publicado: 2003
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1241606/
https://www.ncbi.nlm.nih.gov/pubmed/12896846
Descripción
Sumario:Polychlorinated biphenyls (PCBs) can disrupt the reproductive axis, particularly when the exposure occurs during the vulnerable developmental periods. Some effects of environmental endocrine disruptors such as PCBs may be exerted through binding to estrogen receptors (ERs). In this study we examined the endocrine-disrupting effects of Aroclor 1221 (a commercial PCB mixture), focusing on its actions on the ER-ss, which has been implicated in mediating effects of endocrine-disrupting chemicals. A low, ecologically relevant dose of Aroclor 1221 or vehicle (ethanol) was administered three times each to rat dams, on gestational day 16 and on postpartum days 1 and 4, a developmental period during which steroid hormones have permanent effects on adult brain structure and function. Effects on ER-ss cell number in the anteroventral periventricular nucleus (AVPV) were quantified; this sexually dimorphic nucleus of the brain is essential to female reproductive function. For comparison, we quantified ER-ss cell number in another hypothalamic region, the supraoptic nucleus (SON). Using a stereologic approach, we found that Aroclor 1221 caused a highly significant down-regulation of the number of ER-ss-expressing cells in the AVPV, but had no effect in the SON. Thus, PCB exposure has consequences for neural ER expression, and these findings have implications for wildlife and humans that have been exposed to environmental estrogens, particularly during the susceptible periods of early development.