Cargando…

Applications of gene arrays in environmental toxicology: fingerprints of gene regulation associated with cadmium chloride, benzo(a)pyrene, and trichloroethylene.

Toxicity testing of unknown chemicals currently uses a number of short-term bioassays. These tests are costly and time consuming, require large numbers of animals, and generally focus on a single end point. The recent development of DNA arrays provides a potential mechanism for increasing the effici...

Descripción completa

Detalles Bibliográficos
Autores principales: Bartosiewicz, M, Penn, S, Buckpitt, A
Formato: Texto
Lenguaje:English
Publicado: 2001
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1242054/
https://www.ncbi.nlm.nih.gov/pubmed/11171528
_version_ 1782125574872891392
author Bartosiewicz, M
Penn, S
Buckpitt, A
author_facet Bartosiewicz, M
Penn, S
Buckpitt, A
author_sort Bartosiewicz, M
collection PubMed
description Toxicity testing of unknown chemicals currently uses a number of short-term bioassays. These tests are costly and time consuming, require large numbers of animals, and generally focus on a single end point. The recent development of DNA arrays provides a potential mechanism for increasing the efficiency of standard toxicity testing through genome-wide assessments of gene regulation. In this study, we used DNA arrays containing 148 genes for xenobiotic metabolizing enzymes, DNA repair enzymes, heat shock proteins, cytokines, and housekeeping genes to examine gene expression patterns in the liver in response to cadmium chloride, benzo(a)pyrene (BaP), and trichloroethylene (TCE). Dose-response studies were carried out in mice for each chemical; each produced a unique pattern of gene induction. As expected, CdCl2 markedly up-regulated metallothionine I and II (5- to 10,000-fold at the highest doses) and several of the heat shock/stress response proteins and early response genes. In contrast, administration of BaP up-regulated only Cyp1a1 and Cyp1a2 genes and produced no significant increases in any of the stress response genes or any of the DNA repair genes present on the array. Likewise, TCE-induced gene induction was highly selective; only Hsp 25 and 86 and Cyp2a were up-regulated at the highest dose tested. Microarray analysis with a highly focused set of genes is capable of discriminating between different classes of toxicants and has potential for differentiating highly noxious versus more subtle toxic agents. These data suggest that use of microarrays to evaluate the potential hazards of unknown chemicals or chemical mixtures must include multiple doses and time points to provide effective assessments of potential toxicity of these substances.
format Text
id pubmed-1242054
institution National Center for Biotechnology Information
language English
publishDate 2001
record_format MEDLINE/PubMed
spelling pubmed-12420542005-11-08 Applications of gene arrays in environmental toxicology: fingerprints of gene regulation associated with cadmium chloride, benzo(a)pyrene, and trichloroethylene. Bartosiewicz, M Penn, S Buckpitt, A Environ Health Perspect Research Article Toxicity testing of unknown chemicals currently uses a number of short-term bioassays. These tests are costly and time consuming, require large numbers of animals, and generally focus on a single end point. The recent development of DNA arrays provides a potential mechanism for increasing the efficiency of standard toxicity testing through genome-wide assessments of gene regulation. In this study, we used DNA arrays containing 148 genes for xenobiotic metabolizing enzymes, DNA repair enzymes, heat shock proteins, cytokines, and housekeeping genes to examine gene expression patterns in the liver in response to cadmium chloride, benzo(a)pyrene (BaP), and trichloroethylene (TCE). Dose-response studies were carried out in mice for each chemical; each produced a unique pattern of gene induction. As expected, CdCl2 markedly up-regulated metallothionine I and II (5- to 10,000-fold at the highest doses) and several of the heat shock/stress response proteins and early response genes. In contrast, administration of BaP up-regulated only Cyp1a1 and Cyp1a2 genes and produced no significant increases in any of the stress response genes or any of the DNA repair genes present on the array. Likewise, TCE-induced gene induction was highly selective; only Hsp 25 and 86 and Cyp2a were up-regulated at the highest dose tested. Microarray analysis with a highly focused set of genes is capable of discriminating between different classes of toxicants and has potential for differentiating highly noxious versus more subtle toxic agents. These data suggest that use of microarrays to evaluate the potential hazards of unknown chemicals or chemical mixtures must include multiple doses and time points to provide effective assessments of potential toxicity of these substances. 2001-01 /pmc/articles/PMC1242054/ /pubmed/11171528 Text en
spellingShingle Research Article
Bartosiewicz, M
Penn, S
Buckpitt, A
Applications of gene arrays in environmental toxicology: fingerprints of gene regulation associated with cadmium chloride, benzo(a)pyrene, and trichloroethylene.
title Applications of gene arrays in environmental toxicology: fingerprints of gene regulation associated with cadmium chloride, benzo(a)pyrene, and trichloroethylene.
title_full Applications of gene arrays in environmental toxicology: fingerprints of gene regulation associated with cadmium chloride, benzo(a)pyrene, and trichloroethylene.
title_fullStr Applications of gene arrays in environmental toxicology: fingerprints of gene regulation associated with cadmium chloride, benzo(a)pyrene, and trichloroethylene.
title_full_unstemmed Applications of gene arrays in environmental toxicology: fingerprints of gene regulation associated with cadmium chloride, benzo(a)pyrene, and trichloroethylene.
title_short Applications of gene arrays in environmental toxicology: fingerprints of gene regulation associated with cadmium chloride, benzo(a)pyrene, and trichloroethylene.
title_sort applications of gene arrays in environmental toxicology: fingerprints of gene regulation associated with cadmium chloride, benzo(a)pyrene, and trichloroethylene.
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1242054/
https://www.ncbi.nlm.nih.gov/pubmed/11171528
work_keys_str_mv AT bartosiewiczm applicationsofgenearraysinenvironmentaltoxicologyfingerprintsofgeneregulationassociatedwithcadmiumchloridebenzoapyreneandtrichloroethylene
AT penns applicationsofgenearraysinenvironmentaltoxicologyfingerprintsofgeneregulationassociatedwithcadmiumchloridebenzoapyreneandtrichloroethylene
AT buckpitta applicationsofgenearraysinenvironmentaltoxicologyfingerprintsofgeneregulationassociatedwithcadmiumchloridebenzoapyreneandtrichloroethylene