Cargando…

The radioresistance kinase TLK1B protects the cells by promoting repair of double strand breaks

BACKGROUND: The mammalian protein kinase TLK1 is a homologue of Tousled, a gene involved in flower development in Arabidopsis thaliana. The function of TLK1 is not well known, although knockout of the gene in Drosophila or expression of a dominant negative mutant in mouse cells causes loss of nuclea...

Descripción completa

Detalles Bibliográficos
Autores principales: Sunavala-Dossabhoy, Gulshan, Balakrishnan, Sri Kripa, Sen, Siddhartha, Nuthalapaty, Sam, De Benedetti, Arrigo
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2005
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1242231/
https://www.ncbi.nlm.nih.gov/pubmed/16156902
http://dx.doi.org/10.1186/1471-2199-6-19
_version_ 1782125618885820416
author Sunavala-Dossabhoy, Gulshan
Balakrishnan, Sri Kripa
Sen, Siddhartha
Nuthalapaty, Sam
De Benedetti, Arrigo
author_facet Sunavala-Dossabhoy, Gulshan
Balakrishnan, Sri Kripa
Sen, Siddhartha
Nuthalapaty, Sam
De Benedetti, Arrigo
author_sort Sunavala-Dossabhoy, Gulshan
collection PubMed
description BACKGROUND: The mammalian protein kinase TLK1 is a homologue of Tousled, a gene involved in flower development in Arabidopsis thaliana. The function of TLK1 is not well known, although knockout of the gene in Drosophila or expression of a dominant negative mutant in mouse cells causes loss of nuclear divisions and missegregation of chromosomes probably, due to alterations in chromatin remodeling capacity. Overexpression of TLK1B, a spliced variant of the TLK1 mRNA, in a model mouse cell line increases it's resistance to ionizing radiation (IR) or the radiomimetic drug doxorubicin, also likely due to changes in chromatin remodeling. TLK1B is translationally regulated by the availability of the translation factor eIF4E, and its synthesis is activated by IR. The reason for this mechanism of regulation is likely to provide a rapid means of promoting repair of DSBs. TLK1B specifically phosphorylates histone H3 and Asf1, likely resulting in changes in chromatin structure, particularly at double strand breaks (DSB) sites. RESULTS: In this work, we provide several lines of evidence that TLK1B protects the cells from IR by facilitating the repair of DSBs. First, the pattern of phosphorylation and dephosphorylation of H2AX and H3 indicated that cells overexpressing TLK1B return to pre-IR steady state much more rapidly than controls. Second, the repair of episomes damaged with DSBs was much more rapid in cells overexpressing TLK1B. This was also true for repair of genomic damage. Lastly, we demonstrate with an in vitro repair system that the addition of recombinant TLK1B promotes repair of a linearized plasmid incubated with nuclear extract. In addition, TLK1B in this in vitro system promotes the assembly of chromatin as shown by the formation of more highly supercoiled topomers of the plasmid. CONCLUSION: In this work, we provide evidence that TLK1B promotes the repair of DSBs, likely as a consequence of a change in chromatin remodeling capacity that must precede the assembly of repair complexes at the sites of damage.
format Text
id pubmed-1242231
institution National Center for Biotechnology Information
language English
publishDate 2005
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-12422312005-10-06 The radioresistance kinase TLK1B protects the cells by promoting repair of double strand breaks Sunavala-Dossabhoy, Gulshan Balakrishnan, Sri Kripa Sen, Siddhartha Nuthalapaty, Sam De Benedetti, Arrigo BMC Mol Biol Research Article BACKGROUND: The mammalian protein kinase TLK1 is a homologue of Tousled, a gene involved in flower development in Arabidopsis thaliana. The function of TLK1 is not well known, although knockout of the gene in Drosophila or expression of a dominant negative mutant in mouse cells causes loss of nuclear divisions and missegregation of chromosomes probably, due to alterations in chromatin remodeling capacity. Overexpression of TLK1B, a spliced variant of the TLK1 mRNA, in a model mouse cell line increases it's resistance to ionizing radiation (IR) or the radiomimetic drug doxorubicin, also likely due to changes in chromatin remodeling. TLK1B is translationally regulated by the availability of the translation factor eIF4E, and its synthesis is activated by IR. The reason for this mechanism of regulation is likely to provide a rapid means of promoting repair of DSBs. TLK1B specifically phosphorylates histone H3 and Asf1, likely resulting in changes in chromatin structure, particularly at double strand breaks (DSB) sites. RESULTS: In this work, we provide several lines of evidence that TLK1B protects the cells from IR by facilitating the repair of DSBs. First, the pattern of phosphorylation and dephosphorylation of H2AX and H3 indicated that cells overexpressing TLK1B return to pre-IR steady state much more rapidly than controls. Second, the repair of episomes damaged with DSBs was much more rapid in cells overexpressing TLK1B. This was also true for repair of genomic damage. Lastly, we demonstrate with an in vitro repair system that the addition of recombinant TLK1B promotes repair of a linearized plasmid incubated with nuclear extract. In addition, TLK1B in this in vitro system promotes the assembly of chromatin as shown by the formation of more highly supercoiled topomers of the plasmid. CONCLUSION: In this work, we provide evidence that TLK1B promotes the repair of DSBs, likely as a consequence of a change in chromatin remodeling capacity that must precede the assembly of repair complexes at the sites of damage. BioMed Central 2005-09-12 /pmc/articles/PMC1242231/ /pubmed/16156902 http://dx.doi.org/10.1186/1471-2199-6-19 Text en Copyright © 2005 Sunavala-Dossabhoy et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Sunavala-Dossabhoy, Gulshan
Balakrishnan, Sri Kripa
Sen, Siddhartha
Nuthalapaty, Sam
De Benedetti, Arrigo
The radioresistance kinase TLK1B protects the cells by promoting repair of double strand breaks
title The radioresistance kinase TLK1B protects the cells by promoting repair of double strand breaks
title_full The radioresistance kinase TLK1B protects the cells by promoting repair of double strand breaks
title_fullStr The radioresistance kinase TLK1B protects the cells by promoting repair of double strand breaks
title_full_unstemmed The radioresistance kinase TLK1B protects the cells by promoting repair of double strand breaks
title_short The radioresistance kinase TLK1B protects the cells by promoting repair of double strand breaks
title_sort radioresistance kinase tlk1b protects the cells by promoting repair of double strand breaks
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1242231/
https://www.ncbi.nlm.nih.gov/pubmed/16156902
http://dx.doi.org/10.1186/1471-2199-6-19
work_keys_str_mv AT sunavaladossabhoygulshan theradioresistancekinasetlk1bprotectsthecellsbypromotingrepairofdoublestrandbreaks
AT balakrishnansrikripa theradioresistancekinasetlk1bprotectsthecellsbypromotingrepairofdoublestrandbreaks
AT sensiddhartha theradioresistancekinasetlk1bprotectsthecellsbypromotingrepairofdoublestrandbreaks
AT nuthalapatysam theradioresistancekinasetlk1bprotectsthecellsbypromotingrepairofdoublestrandbreaks
AT debenedettiarrigo theradioresistancekinasetlk1bprotectsthecellsbypromotingrepairofdoublestrandbreaks
AT sunavaladossabhoygulshan radioresistancekinasetlk1bprotectsthecellsbypromotingrepairofdoublestrandbreaks
AT balakrishnansrikripa radioresistancekinasetlk1bprotectsthecellsbypromotingrepairofdoublestrandbreaks
AT sensiddhartha radioresistancekinasetlk1bprotectsthecellsbypromotingrepairofdoublestrandbreaks
AT nuthalapatysam radioresistancekinasetlk1bprotectsthecellsbypromotingrepairofdoublestrandbreaks
AT debenedettiarrigo radioresistancekinasetlk1bprotectsthecellsbypromotingrepairofdoublestrandbreaks