Cargando…
Synergistic Embryotoxicity of Polycyclic Aromatic Hydrocarbon Aryl Hydrocarbon Receptor Agonists with Cytochrome P4501A Inhibitors in Fundulus heteroclitus
Widespread contamination of aquatic systems with polycyclic aromatic hydrocarbons (PAHs) has led to concern about effects of PAHs on aquatic life. Some PAHs have been shown to cause deformities in early life stages of fish that resemble those elicited by planar halogenated aromatic hydrocarbons (pHA...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
National Institute of Environmental Health Science
2004
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1253655/ https://www.ncbi.nlm.nih.gov/pubmed/15579409 http://dx.doi.org/10.1289/ehp.7168 |
_version_ | 1782125748373422080 |
---|---|
author | Wassenberg, Deena M. Di Giulio, Richard T. |
author_facet | Wassenberg, Deena M. Di Giulio, Richard T. |
author_sort | Wassenberg, Deena M. |
collection | PubMed |
description | Widespread contamination of aquatic systems with polycyclic aromatic hydrocarbons (PAHs) has led to concern about effects of PAHs on aquatic life. Some PAHs have been shown to cause deformities in early life stages of fish that resemble those elicited by planar halogenated aromatic hydrocarbons (pHAHs) that are agonists for the aryl hydrocarbon receptor (AHR). Previous studies have suggested that activity of cytochrome P4501A, a member of the AHR gene battery, is important to the toxicity of pHAHs, and inhibition of CYP1A can reduce the early-life-stage toxicity of pHAHs. In light of the effects of CYP1A inhibition on pHAH-derived toxicity, we explored the impact of both model and environmentally relevant CYP1A inhibitors on PAH-derived embryotoxicity. We exposed Fundulus heteroclitus embryos to two PAH-type AHR agonists, β-naphthoflavone and benzo(a)pyrene, and one pHAH-type AHR agonist, 3,3′,4,4′,5-pentachlorobiphenyl (PCB-126), alone and in combination with several CYP1A inhibitors. In agreement with previous studies, coexposure of embryos to PCB-126 with the AHR antagonist and CYP1A inhibitor α-naphthoflavone decreased frequency and severity of deformities compared with embryos exposed to PCB-126 alone. In contrast, embryos coexposed to the PAHs with each of the CYP1A inhibitors tested were deformed with increased severity and frequency compared with embryos dosed with PAH alone. The mechanism by which inhibition of CYP1A increased embryotoxicity of the PAHs tested is not understood, but these results may be helpful in elucidating mechanisms by which PAHs are embryotoxic. Additionally, these results call into question additive models of PAH embryotoxicity for environmental PAH mixtures that contain both AHR agonists and CYP1A inhibitors. |
format | Text |
id | pubmed-1253655 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2004 |
publisher | National Institute of Environmental Health Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-12536552005-11-08 Synergistic Embryotoxicity of Polycyclic Aromatic Hydrocarbon Aryl Hydrocarbon Receptor Agonists with Cytochrome P4501A Inhibitors in Fundulus heteroclitus Wassenberg, Deena M. Di Giulio, Richard T. Environ Health Perspect Research Widespread contamination of aquatic systems with polycyclic aromatic hydrocarbons (PAHs) has led to concern about effects of PAHs on aquatic life. Some PAHs have been shown to cause deformities in early life stages of fish that resemble those elicited by planar halogenated aromatic hydrocarbons (pHAHs) that are agonists for the aryl hydrocarbon receptor (AHR). Previous studies have suggested that activity of cytochrome P4501A, a member of the AHR gene battery, is important to the toxicity of pHAHs, and inhibition of CYP1A can reduce the early-life-stage toxicity of pHAHs. In light of the effects of CYP1A inhibition on pHAH-derived toxicity, we explored the impact of both model and environmentally relevant CYP1A inhibitors on PAH-derived embryotoxicity. We exposed Fundulus heteroclitus embryos to two PAH-type AHR agonists, β-naphthoflavone and benzo(a)pyrene, and one pHAH-type AHR agonist, 3,3′,4,4′,5-pentachlorobiphenyl (PCB-126), alone and in combination with several CYP1A inhibitors. In agreement with previous studies, coexposure of embryos to PCB-126 with the AHR antagonist and CYP1A inhibitor α-naphthoflavone decreased frequency and severity of deformities compared with embryos exposed to PCB-126 alone. In contrast, embryos coexposed to the PAHs with each of the CYP1A inhibitors tested were deformed with increased severity and frequency compared with embryos dosed with PAH alone. The mechanism by which inhibition of CYP1A increased embryotoxicity of the PAHs tested is not understood, but these results may be helpful in elucidating mechanisms by which PAHs are embryotoxic. Additionally, these results call into question additive models of PAH embryotoxicity for environmental PAH mixtures that contain both AHR agonists and CYP1A inhibitors. National Institute of Environmental Health Science 2004-12 2004-08-18 /pmc/articles/PMC1253655/ /pubmed/15579409 http://dx.doi.org/10.1289/ehp.7168 Text en http://creativecommons.org/publicdomain/mark/1.0/ Publication of EHP lies in the public domain and is therefore without copyright. All text from EHP may be reprinted freely. Use of materials published in EHP should be acknowledged (for example, ?Reproduced with permission from Environmental Health Perspectives?); pertinent reference information should be provided for the article from which the material was reproduced. Articles from EHP, especially the News section, may contain photographs or illustrations copyrighted by other commercial organizations or individuals that may not be used without obtaining prior approval from the holder of the copyright. |
spellingShingle | Research Wassenberg, Deena M. Di Giulio, Richard T. Synergistic Embryotoxicity of Polycyclic Aromatic Hydrocarbon Aryl Hydrocarbon Receptor Agonists with Cytochrome P4501A Inhibitors in Fundulus heteroclitus |
title | Synergistic Embryotoxicity of Polycyclic Aromatic Hydrocarbon Aryl Hydrocarbon Receptor Agonists with Cytochrome P4501A Inhibitors in Fundulus heteroclitus |
title_full | Synergistic Embryotoxicity of Polycyclic Aromatic Hydrocarbon Aryl Hydrocarbon Receptor Agonists with Cytochrome P4501A Inhibitors in Fundulus heteroclitus |
title_fullStr | Synergistic Embryotoxicity of Polycyclic Aromatic Hydrocarbon Aryl Hydrocarbon Receptor Agonists with Cytochrome P4501A Inhibitors in Fundulus heteroclitus |
title_full_unstemmed | Synergistic Embryotoxicity of Polycyclic Aromatic Hydrocarbon Aryl Hydrocarbon Receptor Agonists with Cytochrome P4501A Inhibitors in Fundulus heteroclitus |
title_short | Synergistic Embryotoxicity of Polycyclic Aromatic Hydrocarbon Aryl Hydrocarbon Receptor Agonists with Cytochrome P4501A Inhibitors in Fundulus heteroclitus |
title_sort | synergistic embryotoxicity of polycyclic aromatic hydrocarbon aryl hydrocarbon receptor agonists with cytochrome p4501a inhibitors in fundulus heteroclitus |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1253655/ https://www.ncbi.nlm.nih.gov/pubmed/15579409 http://dx.doi.org/10.1289/ehp.7168 |
work_keys_str_mv | AT wassenbergdeenam synergisticembryotoxicityofpolycyclicaromatichydrocarbonarylhydrocarbonreceptoragonistswithcytochromep4501ainhibitorsinfundulusheteroclitus AT digiuliorichardt synergisticembryotoxicityofpolycyclicaromatichydrocarbonarylhydrocarbonreceptoragonistswithcytochromep4501ainhibitorsinfundulusheteroclitus |