Cargando…
Tumour necrosis factor activates the mitogen-activated protein kinases p38α and ERK in the synovial membrane in vivo
Tumour necrosis factor (TNF) is considered to be a major factor in chronic synovial inflammation and is an inducer of mitogen-activated protein kinase (MAPK) signalling. In the present study we investigated the ability of TNF to activate MAPKs in the synovial membrane in vivo. We studied human TNF t...
Autores principales: | , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2005
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1257441/ https://www.ncbi.nlm.nih.gov/pubmed/16207331 http://dx.doi.org/10.1186/ar1797 |
_version_ | 1782125807066415104 |
---|---|
author | Görtz, Birgit Hayer, Silvia Tuerck, Birgit Zwerina, Jochen Smolen, Josef S Schett, Georg |
author_facet | Görtz, Birgit Hayer, Silvia Tuerck, Birgit Zwerina, Jochen Smolen, Josef S Schett, Georg |
author_sort | Görtz, Birgit |
collection | PubMed |
description | Tumour necrosis factor (TNF) is considered to be a major factor in chronic synovial inflammation and is an inducer of mitogen-activated protein kinase (MAPK) signalling. In the present study we investigated the ability of TNF to activate MAPKs in the synovial membrane in vivo. We studied human TNF transgenic mice – an in vivo model of TNF-induced arthritis – to examine phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun amino terminal kinase (JNK) and p38MAPKα in the inflamed joints by means of immunoblot and immunohistochemistry. In addition, the effects of systemic blockade of TNF, IL-1 and receptor activator of nuclear factor-κB (RANK) ligand on the activation of MAPKs were assessed. In vivo, overexpression of TNF induced activation of p38MAPKα and ERK in the synovial membrane, whereas activation of JNK was less pronounced and rarely observed on immunohistochemical analysis. Activated p38MAPKα was predominantly found in synovial macrophages, whereas ERK activation was present in both synovial macrophages and fibroblasts. T and B lymphocytes did not exhibit major activation of any of the three MAPKs. Systemic blockade of TNF reduced activation of p38MAPKα and ERK, whereas inhibition of IL-1 only affected p38MAPKα and blockade of RANK ligand did not result in any decrease in MAPK activation in the synovial membrane. These data indicate that TNF preferentially activates p38MAPKα and ERK in synovial membrane exposed to TNF. This not only suggests that targeted inhibition of p38MAPKα and ERK is a feasible strategy for blocking TNF-mediated effects on joints, but it also shows that even currently available methods to block TNF effectively reduce activation of these two MAPKs. |
format | Text |
id | pubmed-1257441 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2005 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-12574412005-10-19 Tumour necrosis factor activates the mitogen-activated protein kinases p38α and ERK in the synovial membrane in vivo Görtz, Birgit Hayer, Silvia Tuerck, Birgit Zwerina, Jochen Smolen, Josef S Schett, Georg Arthritis Res Ther Research Article Tumour necrosis factor (TNF) is considered to be a major factor in chronic synovial inflammation and is an inducer of mitogen-activated protein kinase (MAPK) signalling. In the present study we investigated the ability of TNF to activate MAPKs in the synovial membrane in vivo. We studied human TNF transgenic mice – an in vivo model of TNF-induced arthritis – to examine phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun amino terminal kinase (JNK) and p38MAPKα in the inflamed joints by means of immunoblot and immunohistochemistry. In addition, the effects of systemic blockade of TNF, IL-1 and receptor activator of nuclear factor-κB (RANK) ligand on the activation of MAPKs were assessed. In vivo, overexpression of TNF induced activation of p38MAPKα and ERK in the synovial membrane, whereas activation of JNK was less pronounced and rarely observed on immunohistochemical analysis. Activated p38MAPKα was predominantly found in synovial macrophages, whereas ERK activation was present in both synovial macrophages and fibroblasts. T and B lymphocytes did not exhibit major activation of any of the three MAPKs. Systemic blockade of TNF reduced activation of p38MAPKα and ERK, whereas inhibition of IL-1 only affected p38MAPKα and blockade of RANK ligand did not result in any decrease in MAPK activation in the synovial membrane. These data indicate that TNF preferentially activates p38MAPKα and ERK in synovial membrane exposed to TNF. This not only suggests that targeted inhibition of p38MAPKα and ERK is a feasible strategy for blocking TNF-mediated effects on joints, but it also shows that even currently available methods to block TNF effectively reduce activation of these two MAPKs. BioMed Central 2005 2005-07-28 /pmc/articles/PMC1257441/ /pubmed/16207331 http://dx.doi.org/10.1186/ar1797 Text en Copyright © 2005 Görtz et al.; licensee BioMed Central Ltd. |
spellingShingle | Research Article Görtz, Birgit Hayer, Silvia Tuerck, Birgit Zwerina, Jochen Smolen, Josef S Schett, Georg Tumour necrosis factor activates the mitogen-activated protein kinases p38α and ERK in the synovial membrane in vivo |
title | Tumour necrosis factor activates the mitogen-activated protein kinases p38α and ERK in the synovial membrane in vivo |
title_full | Tumour necrosis factor activates the mitogen-activated protein kinases p38α and ERK in the synovial membrane in vivo |
title_fullStr | Tumour necrosis factor activates the mitogen-activated protein kinases p38α and ERK in the synovial membrane in vivo |
title_full_unstemmed | Tumour necrosis factor activates the mitogen-activated protein kinases p38α and ERK in the synovial membrane in vivo |
title_short | Tumour necrosis factor activates the mitogen-activated protein kinases p38α and ERK in the synovial membrane in vivo |
title_sort | tumour necrosis factor activates the mitogen-activated protein kinases p38α and erk in the synovial membrane in vivo |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1257441/ https://www.ncbi.nlm.nih.gov/pubmed/16207331 http://dx.doi.org/10.1186/ar1797 |
work_keys_str_mv | AT gortzbirgit tumournecrosisfactoractivatesthemitogenactivatedproteinkinasesp38aanderkinthesynovialmembraneinvivo AT hayersilvia tumournecrosisfactoractivatesthemitogenactivatedproteinkinasesp38aanderkinthesynovialmembraneinvivo AT tuerckbirgit tumournecrosisfactoractivatesthemitogenactivatedproteinkinasesp38aanderkinthesynovialmembraneinvivo AT zwerinajochen tumournecrosisfactoractivatesthemitogenactivatedproteinkinasesp38aanderkinthesynovialmembraneinvivo AT smolenjosefs tumournecrosisfactoractivatesthemitogenactivatedproteinkinasesp38aanderkinthesynovialmembraneinvivo AT schettgeorg tumournecrosisfactoractivatesthemitogenactivatedproteinkinasesp38aanderkinthesynovialmembraneinvivo |