Cargando…
Hospitalization Rates for Coronary Heart Disease in Relation to Residence Near Areas Contaminated with Persistent Organic Pollutants and Other Pollutants
Exposure to environmental pollutants may contribute to the development of coronary heart disease (CHD). We determined the ZIP codes containing or abutting each of the approximately 900 hazardous waste sites in New York and identified the major contaminants in each. Three categories of ZIP codes were...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
National Institue of Environmental Health Sciences
2005
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1257602/ https://www.ncbi.nlm.nih.gov/pubmed/15929900 http://dx.doi.org/10.1289/ehp.7595 |
Sumario: | Exposure to environmental pollutants may contribute to the development of coronary heart disease (CHD). We determined the ZIP codes containing or abutting each of the approximately 900 hazardous waste sites in New York and identified the major contaminants in each. Three categories of ZIP codes were then distinguished: those containing or abutting sites contaminated with persistent organic pollutants (POPs), those containing only other types of wastes (“other waste”), and those not containing any identified hazardous waste site (“clean”). Effects of residence in each of these ZIP codes on CHD and acute myocardial infarction (AMI) hospital discharge rates were assessed with a negative binomial model, adjusting for age, sex, race, income, and health insurance coverage. Patients living in ZIP codes contaminated with POPs had a statistically significant 15.0% elevation in CHD hospital discharge rates and a 20.0% elevation in AMI discharge rates compared with clean ZIP codes. In neither of the comparisons were rates in other-waste sites significantly greater than in clean sites. In a subset of POP ZIP codes along the Hudson River, where average income is higher and there is less smoking, better diet, and more exercise, the rate of hospitalization for CHD was 35.8% greater and for AMI 39.1% greater than in clean sites. Although the cross-sectional design of the study prevents definite conclusions on causal inference, the results indirectly support the hypothesis that living near a POP-contaminated site constitutes a risk of exposure and of development of CHD and AMI. |
---|