Cargando…
Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy
The rapid proliferation of many different engineered nanomaterials (defined as materials designed and produced to have structural features with at least one dimension of 100 nanometers or less) presents a dilemma to regulators regarding hazard identification. The International Life Sciences Institut...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2005
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1260029/ https://www.ncbi.nlm.nih.gov/pubmed/16209704 http://dx.doi.org/10.1186/1743-8977-2-8 |
_version_ | 1782125860169449472 |
---|---|
author | Oberdörster, Günter Maynard, Andrew Donaldson, Ken Castranova, Vincent Fitzpatrick, Julie Ausman, Kevin Carter, Janet Karn, Barbara Kreyling, Wolfgang Lai, David Olin, Stephen Monteiro-Riviere, Nancy Warheit, David Yang, Hong |
author_facet | Oberdörster, Günter Maynard, Andrew Donaldson, Ken Castranova, Vincent Fitzpatrick, Julie Ausman, Kevin Carter, Janet Karn, Barbara Kreyling, Wolfgang Lai, David Olin, Stephen Monteiro-Riviere, Nancy Warheit, David Yang, Hong |
author_sort | Oberdörster, Günter |
collection | PubMed |
description | The rapid proliferation of many different engineered nanomaterials (defined as materials designed and produced to have structural features with at least one dimension of 100 nanometers or less) presents a dilemma to regulators regarding hazard identification. The International Life Sciences Institute Research Foundation/Risk Science Institute convened an expert working group to develop a screening strategy for the hazard identification of engineered nanomaterials. The working group report presents the elements of a screening strategy rather than a detailed testing protocol. Based on an evaluation of the limited data currently available, the report presents a broad data gathering strategy applicable to this early stage in the development of a risk assessment process for nanomaterials. Oral, dermal, inhalation, and injection routes of exposure are included recognizing that, depending on use patterns, exposure to nanomaterials may occur by any of these routes. The three key elements of the toxicity screening strategy are: Physicochemical Characteristics, In Vitro Assays (cellular and non-cellular), and In Vivo Assays. There is a strong likelihood that biological activity of nanoparticles will depend on physicochemical parameters not routinely considered in toxicity screening studies. Physicochemical properties that may be important in understanding the toxic effects of test materials include particle size and size distribution, agglomeration state, shape, crystal structure, chemical composition, surface area, surface chemistry, surface charge, and porosity. In vitro techniques allow specific biological and mechanistic pathways to be isolated and tested under controlled conditions, in ways that are not feasible in in vivo tests. Tests are suggested for portal-of-entry toxicity for lungs, skin, and the mucosal membranes, and target organ toxicity for endothelium, blood, spleen, liver, nervous system, heart, and kidney. Non-cellular assessment of nanoparticle durability, protein interactions, complement activation, and pro-oxidant activity is also considered. Tier 1 in vivo assays are proposed for pulmonary, oral, skin and injection exposures, and Tier 2 evaluations for pulmonary exposures are also proposed. Tier 1 evaluations include markers of inflammation, oxidant stress, and cell proliferation in portal-of-entry and selected remote organs and tissues. Tier 2 evaluations for pulmonary exposures could include deposition, translocation, and toxicokinetics and biopersistence studies; effects of multiple exposures; potential effects on the reproductive system, placenta, and fetus; alternative animal models; and mechanistic studies. |
format | Text |
id | pubmed-1260029 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2005 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-12600292005-10-21 Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy Oberdörster, Günter Maynard, Andrew Donaldson, Ken Castranova, Vincent Fitzpatrick, Julie Ausman, Kevin Carter, Janet Karn, Barbara Kreyling, Wolfgang Lai, David Olin, Stephen Monteiro-Riviere, Nancy Warheit, David Yang, Hong Part Fibre Toxicol Review The rapid proliferation of many different engineered nanomaterials (defined as materials designed and produced to have structural features with at least one dimension of 100 nanometers or less) presents a dilemma to regulators regarding hazard identification. The International Life Sciences Institute Research Foundation/Risk Science Institute convened an expert working group to develop a screening strategy for the hazard identification of engineered nanomaterials. The working group report presents the elements of a screening strategy rather than a detailed testing protocol. Based on an evaluation of the limited data currently available, the report presents a broad data gathering strategy applicable to this early stage in the development of a risk assessment process for nanomaterials. Oral, dermal, inhalation, and injection routes of exposure are included recognizing that, depending on use patterns, exposure to nanomaterials may occur by any of these routes. The three key elements of the toxicity screening strategy are: Physicochemical Characteristics, In Vitro Assays (cellular and non-cellular), and In Vivo Assays. There is a strong likelihood that biological activity of nanoparticles will depend on physicochemical parameters not routinely considered in toxicity screening studies. Physicochemical properties that may be important in understanding the toxic effects of test materials include particle size and size distribution, agglomeration state, shape, crystal structure, chemical composition, surface area, surface chemistry, surface charge, and porosity. In vitro techniques allow specific biological and mechanistic pathways to be isolated and tested under controlled conditions, in ways that are not feasible in in vivo tests. Tests are suggested for portal-of-entry toxicity for lungs, skin, and the mucosal membranes, and target organ toxicity for endothelium, blood, spleen, liver, nervous system, heart, and kidney. Non-cellular assessment of nanoparticle durability, protein interactions, complement activation, and pro-oxidant activity is also considered. Tier 1 in vivo assays are proposed for pulmonary, oral, skin and injection exposures, and Tier 2 evaluations for pulmonary exposures are also proposed. Tier 1 evaluations include markers of inflammation, oxidant stress, and cell proliferation in portal-of-entry and selected remote organs and tissues. Tier 2 evaluations for pulmonary exposures could include deposition, translocation, and toxicokinetics and biopersistence studies; effects of multiple exposures; potential effects on the reproductive system, placenta, and fetus; alternative animal models; and mechanistic studies. BioMed Central 2005-10-06 /pmc/articles/PMC1260029/ /pubmed/16209704 http://dx.doi.org/10.1186/1743-8977-2-8 Text en Copyright © 2005 Oberdörster et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Review Oberdörster, Günter Maynard, Andrew Donaldson, Ken Castranova, Vincent Fitzpatrick, Julie Ausman, Kevin Carter, Janet Karn, Barbara Kreyling, Wolfgang Lai, David Olin, Stephen Monteiro-Riviere, Nancy Warheit, David Yang, Hong Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy |
title | Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy |
title_full | Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy |
title_fullStr | Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy |
title_full_unstemmed | Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy |
title_short | Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy |
title_sort | principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1260029/ https://www.ncbi.nlm.nih.gov/pubmed/16209704 http://dx.doi.org/10.1186/1743-8977-2-8 |
work_keys_str_mv | AT oberdorstergunter principlesforcharacterizingthepotentialhumanhealtheffectsfromexposuretonanomaterialselementsofascreeningstrategy AT maynardandrew principlesforcharacterizingthepotentialhumanhealtheffectsfromexposuretonanomaterialselementsofascreeningstrategy AT donaldsonken principlesforcharacterizingthepotentialhumanhealtheffectsfromexposuretonanomaterialselementsofascreeningstrategy AT castranovavincent principlesforcharacterizingthepotentialhumanhealtheffectsfromexposuretonanomaterialselementsofascreeningstrategy AT fitzpatrickjulie principlesforcharacterizingthepotentialhumanhealtheffectsfromexposuretonanomaterialselementsofascreeningstrategy AT ausmankevin principlesforcharacterizingthepotentialhumanhealtheffectsfromexposuretonanomaterialselementsofascreeningstrategy AT carterjanet principlesforcharacterizingthepotentialhumanhealtheffectsfromexposuretonanomaterialselementsofascreeningstrategy AT karnbarbara principlesforcharacterizingthepotentialhumanhealtheffectsfromexposuretonanomaterialselementsofascreeningstrategy AT kreylingwolfgang principlesforcharacterizingthepotentialhumanhealtheffectsfromexposuretonanomaterialselementsofascreeningstrategy AT laidavid principlesforcharacterizingthepotentialhumanhealtheffectsfromexposuretonanomaterialselementsofascreeningstrategy AT olinstephen principlesforcharacterizingthepotentialhumanhealtheffectsfromexposuretonanomaterialselementsofascreeningstrategy AT monteirorivierenancy principlesforcharacterizingthepotentialhumanhealtheffectsfromexposuretonanomaterialselementsofascreeningstrategy AT warheitdavid principlesforcharacterizingthepotentialhumanhealtheffectsfromexposuretonanomaterialselementsofascreeningstrategy AT yanghong principlesforcharacterizingthepotentialhumanhealtheffectsfromexposuretonanomaterialselementsofascreeningstrategy AT principlesforcharacterizingthepotentialhumanhealtheffectsfromexposuretonanomaterialselementsofascreeningstrategy |