Cargando…
Clustering protein sequences with a novel metric transformed from sequence similarity scores and sequence alignments with neural networks
BACKGROUND: The sequencing of the human genome has enabled us to access a comprehensive list of genes (both experimental and predicted) for further analysis. While a majority of the approximately 30000 known and predicted human coding genes are characterized and have been assigned at least one funct...
Autores principales: | Ma, Qicheng, Chirn, Gung-Wei, Cai, Richard, Szustakowski, Joseph D, Nirmala, NR |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2005
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1261163/ https://www.ncbi.nlm.nih.gov/pubmed/16202129 http://dx.doi.org/10.1186/1471-2105-6-242 |
Ejemplares similares
-
Uncovering mechanisms of transcriptional regulations by systematic mining of cis regulatory elements with gene expression profiles
por: Ma, Qicheng, et al.
Publicado: (2008) -
An improved alignment-free model for dna sequence similarity metric
por: Bao, Junpeng, et al.
Publicado: (2014) -
A statistical score for assessing the quality of multiple sequence alignments
por: Ahola, Virpi, et al.
Publicado: (2006) -
Clustering exact matches of pairwise sequence alignments by weighted linear regression
por: González, Alvaro J, et al.
Publicado: (2008) -
MergeAlign: improving multiple sequence alignment performance by dynamic reconstruction of consensus multiple sequence alignments
por: Collingridge, Peter W, et al.
Publicado: (2012)