Cargando…
Dorsal horn-enriched genes identified by DNA microarray, in situ hybridization and immunohistochemistry
BACKGROUND: Neurons in the dorsal spinal cord play important roles in nociception and pain. These neurons receive input from peripheral sensory neurons and then transmit the signals to the brain, as well as receive and integrate descending control signals from the brain. Many molecules important for...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2002
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC126259/ https://www.ncbi.nlm.nih.gov/pubmed/12188929 http://dx.doi.org/10.1186/1471-2202-3-11 |
_version_ | 1782120329470017536 |
---|---|
author | Sun, Hong Xu, Jian Della Penna, Kimberly B Benz, Robert J Kinose, Fumi Holder, Daniel J Koblan, Kenneth S Gerhold, David L Wang, Hao |
author_facet | Sun, Hong Xu, Jian Della Penna, Kimberly B Benz, Robert J Kinose, Fumi Holder, Daniel J Koblan, Kenneth S Gerhold, David L Wang, Hao |
author_sort | Sun, Hong |
collection | PubMed |
description | BACKGROUND: Neurons in the dorsal spinal cord play important roles in nociception and pain. These neurons receive input from peripheral sensory neurons and then transmit the signals to the brain, as well as receive and integrate descending control signals from the brain. Many molecules important for pain transmission have been demonstrated to be localized to the dorsal horn of the spinal cord. Further understanding of the molecular interactions and signaling pathways in the dorsal horn neurons will require a better knowledge of the molecular neuroanatomy in the dorsal spinal cord. RESULTS: A large scale screening was conducted for genes with enriched expression in the dorsal spinal cord using DNA microarray and quantitative real-time PCR. In addition to genes known to be specifically expressed in the dorsal spinal cord, other neuropeptides, receptors, ion channels, and signaling molecules were also found enriched in the dorsal spinal cord. In situ hybridization and immunohistochemistry revealed the cellular expression of a subset of these genes. The regulation of a subset of the genes was also studied in the spinal nerve ligation (SNL) neuropathic pain model. In general, we found that the genes that are enriched in the dorsal spinal cord were not among those found to be up-regulated in the spinal nerve ligation model of neuropathic pain. This study also provides a level of validation of the use of DNA microarrays in conjunction with our novel analysis algorithm (SAFER) for the identification of differences in gene expression. CONCLUSION: This study identified molecules that are enriched in the dorsal horn of the spinal cord and provided a molecular neuroanatomy in the spinal cord, which will aid in the understanding of the molecular mechanisms important in nociception and pain. |
format | Text |
id | pubmed-126259 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2002 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-1262592002-09-20 Dorsal horn-enriched genes identified by DNA microarray, in situ hybridization and immunohistochemistry Sun, Hong Xu, Jian Della Penna, Kimberly B Benz, Robert J Kinose, Fumi Holder, Daniel J Koblan, Kenneth S Gerhold, David L Wang, Hao BMC Neurosci Research Article BACKGROUND: Neurons in the dorsal spinal cord play important roles in nociception and pain. These neurons receive input from peripheral sensory neurons and then transmit the signals to the brain, as well as receive and integrate descending control signals from the brain. Many molecules important for pain transmission have been demonstrated to be localized to the dorsal horn of the spinal cord. Further understanding of the molecular interactions and signaling pathways in the dorsal horn neurons will require a better knowledge of the molecular neuroanatomy in the dorsal spinal cord. RESULTS: A large scale screening was conducted for genes with enriched expression in the dorsal spinal cord using DNA microarray and quantitative real-time PCR. In addition to genes known to be specifically expressed in the dorsal spinal cord, other neuropeptides, receptors, ion channels, and signaling molecules were also found enriched in the dorsal spinal cord. In situ hybridization and immunohistochemistry revealed the cellular expression of a subset of these genes. The regulation of a subset of the genes was also studied in the spinal nerve ligation (SNL) neuropathic pain model. In general, we found that the genes that are enriched in the dorsal spinal cord were not among those found to be up-regulated in the spinal nerve ligation model of neuropathic pain. This study also provides a level of validation of the use of DNA microarrays in conjunction with our novel analysis algorithm (SAFER) for the identification of differences in gene expression. CONCLUSION: This study identified molecules that are enriched in the dorsal horn of the spinal cord and provided a molecular neuroanatomy in the spinal cord, which will aid in the understanding of the molecular mechanisms important in nociception and pain. BioMed Central 2002-08-20 /pmc/articles/PMC126259/ /pubmed/12188929 http://dx.doi.org/10.1186/1471-2202-3-11 Text en Copyright © 2002 Sun et al; licensee BioMed Central Ltd. This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original URL. |
spellingShingle | Research Article Sun, Hong Xu, Jian Della Penna, Kimberly B Benz, Robert J Kinose, Fumi Holder, Daniel J Koblan, Kenneth S Gerhold, David L Wang, Hao Dorsal horn-enriched genes identified by DNA microarray, in situ hybridization and immunohistochemistry |
title | Dorsal horn-enriched genes identified by DNA microarray, in situ hybridization and immunohistochemistry |
title_full | Dorsal horn-enriched genes identified by DNA microarray, in situ hybridization and immunohistochemistry |
title_fullStr | Dorsal horn-enriched genes identified by DNA microarray, in situ hybridization and immunohistochemistry |
title_full_unstemmed | Dorsal horn-enriched genes identified by DNA microarray, in situ hybridization and immunohistochemistry |
title_short | Dorsal horn-enriched genes identified by DNA microarray, in situ hybridization and immunohistochemistry |
title_sort | dorsal horn-enriched genes identified by dna microarray, in situ hybridization and immunohistochemistry |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC126259/ https://www.ncbi.nlm.nih.gov/pubmed/12188929 http://dx.doi.org/10.1186/1471-2202-3-11 |
work_keys_str_mv | AT sunhong dorsalhornenrichedgenesidentifiedbydnamicroarrayinsituhybridizationandimmunohistochemistry AT xujian dorsalhornenrichedgenesidentifiedbydnamicroarrayinsituhybridizationandimmunohistochemistry AT dellapennakimberlyb dorsalhornenrichedgenesidentifiedbydnamicroarrayinsituhybridizationandimmunohistochemistry AT benzrobertj dorsalhornenrichedgenesidentifiedbydnamicroarrayinsituhybridizationandimmunohistochemistry AT kinosefumi dorsalhornenrichedgenesidentifiedbydnamicroarrayinsituhybridizationandimmunohistochemistry AT holderdanielj dorsalhornenrichedgenesidentifiedbydnamicroarrayinsituhybridizationandimmunohistochemistry AT koblankenneths dorsalhornenrichedgenesidentifiedbydnamicroarrayinsituhybridizationandimmunohistochemistry AT gerholddavidl dorsalhornenrichedgenesidentifiedbydnamicroarrayinsituhybridizationandimmunohistochemistry AT wanghao dorsalhornenrichedgenesidentifiedbydnamicroarrayinsituhybridizationandimmunohistochemistry |