Cargando…
Biochemical characterization of Cdk2-Speedy/Ringo A2
BACKGROUND: Normal cell cycle progression requires the precise activation and inactivation of cyclin-dependent protein kinases (CDKs), which consist of a CDK and a cyclin subunit. A novel cell cycle regulator called Speedy/Ringo shows no sequence similarity to cyclins, yet can directly bind to and a...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2005
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1262692/ https://www.ncbi.nlm.nih.gov/pubmed/16191191 http://dx.doi.org/10.1186/1471-2091-6-19 |
_version_ | 1782125883693203456 |
---|---|
author | Cheng, Aiyang Gerry, Shannon Kaldis, Philipp Solomon, Mark J |
author_facet | Cheng, Aiyang Gerry, Shannon Kaldis, Philipp Solomon, Mark J |
author_sort | Cheng, Aiyang |
collection | PubMed |
description | BACKGROUND: Normal cell cycle progression requires the precise activation and inactivation of cyclin-dependent protein kinases (CDKs), which consist of a CDK and a cyclin subunit. A novel cell cycle regulator called Speedy/Ringo shows no sequence similarity to cyclins, yet can directly bind to and activate CDKs. Speedy/Ringo proteins, which bind to and activate Cdc2 and Cdk2 in vitro, are required for the G2 to M transition during Xenopus oocyte maturation and for normal S-phase entry in cultured human cells. RESULTS: We have characterized the substrate specificity and enzymatic activity of human Cdk2-Speedy/Ringo A2 in order to gain insights into the possible functions of this complex. In contrast to Cdk2-cyclin A, which has a well-defined consensus target site ((S/T)PX(K/R)) that strongly favors substrates containing a lysine at the +3 position of substrates, Cdk2-Speedy/Ringo A2 displayed a broad substrate specificity at this position. Consequently, Cdk2-Ringo/Speedy A2 phosphorylated optimal Cdk2 substrates such as histone H1 and a KSPRK peptide poorly, only ~0.08% as well as Cdk2-cyclin A, but non-canonical Cdk2 substrates such as a KSPRY peptide relatively well, with an efficiency of ~80% compared to Cdk2-cyclin A. Cdk2-Speedy/Ringo A2 also phosphorylated authentic Cdk2 substrates, such as Cdc25 proteins, which contain non-canonical CDK phosphorylation sites, nearly as well as Cdk2-cyclin A. Phosphopeptide mapping indicated that Cdk2-Speedy/Ringo A2 and Cdk2-cyclin A phosphorylate distinct subsets of sites on Cdc25 proteins. Thus, the low activity that Cdk2-Speedy/Ringo A2 displays when assayed on conventional Cdk2 substrates may significantly underestimate the potential physiological importance of Cdk2-Speedy/Ringo A2 in phosphorylating key subsets of Cdk2 substrates. Unlike Cdk2-cyclin A, whose activity depends strongly on activating phosphorylation of Cdk2 on Thr-160, neither the overall catalytic activity nor the substrate recognition by Cdk2-Speedy/Ringo A2 was significantly affected by this phosphorylation. Furthermore, Cdk2-Speedy/Ringo A2 was not a suitable substrate for metazoan CAK (which phosphorylates Cdk2 at Thr-160), supporting the notion that Speedy/Ringo A2 activates Cdk2 in a CAK-independent manner. CONCLUSION: There are major differences in substrate preferences between CDK-Speedy/Ringo A2 and Cdk2-cyclin complexes. These differences may accommodate the CAK-independent activation of Cdk2 by Speedy/Ringo A2 and they raise the possibility that CDK-Speedy/Ringo A2 complexes could phosphorylate and regulate a subset of non-canonical CDK substrates, such as Cdc25 protein phosphatases, to control cell cycle progression. |
format | Text |
id | pubmed-1262692 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2005 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-12626922005-10-22 Biochemical characterization of Cdk2-Speedy/Ringo A2 Cheng, Aiyang Gerry, Shannon Kaldis, Philipp Solomon, Mark J BMC Biochem Research Article BACKGROUND: Normal cell cycle progression requires the precise activation and inactivation of cyclin-dependent protein kinases (CDKs), which consist of a CDK and a cyclin subunit. A novel cell cycle regulator called Speedy/Ringo shows no sequence similarity to cyclins, yet can directly bind to and activate CDKs. Speedy/Ringo proteins, which bind to and activate Cdc2 and Cdk2 in vitro, are required for the G2 to M transition during Xenopus oocyte maturation and for normal S-phase entry in cultured human cells. RESULTS: We have characterized the substrate specificity and enzymatic activity of human Cdk2-Speedy/Ringo A2 in order to gain insights into the possible functions of this complex. In contrast to Cdk2-cyclin A, which has a well-defined consensus target site ((S/T)PX(K/R)) that strongly favors substrates containing a lysine at the +3 position of substrates, Cdk2-Speedy/Ringo A2 displayed a broad substrate specificity at this position. Consequently, Cdk2-Ringo/Speedy A2 phosphorylated optimal Cdk2 substrates such as histone H1 and a KSPRK peptide poorly, only ~0.08% as well as Cdk2-cyclin A, but non-canonical Cdk2 substrates such as a KSPRY peptide relatively well, with an efficiency of ~80% compared to Cdk2-cyclin A. Cdk2-Speedy/Ringo A2 also phosphorylated authentic Cdk2 substrates, such as Cdc25 proteins, which contain non-canonical CDK phosphorylation sites, nearly as well as Cdk2-cyclin A. Phosphopeptide mapping indicated that Cdk2-Speedy/Ringo A2 and Cdk2-cyclin A phosphorylate distinct subsets of sites on Cdc25 proteins. Thus, the low activity that Cdk2-Speedy/Ringo A2 displays when assayed on conventional Cdk2 substrates may significantly underestimate the potential physiological importance of Cdk2-Speedy/Ringo A2 in phosphorylating key subsets of Cdk2 substrates. Unlike Cdk2-cyclin A, whose activity depends strongly on activating phosphorylation of Cdk2 on Thr-160, neither the overall catalytic activity nor the substrate recognition by Cdk2-Speedy/Ringo A2 was significantly affected by this phosphorylation. Furthermore, Cdk2-Speedy/Ringo A2 was not a suitable substrate for metazoan CAK (which phosphorylates Cdk2 at Thr-160), supporting the notion that Speedy/Ringo A2 activates Cdk2 in a CAK-independent manner. CONCLUSION: There are major differences in substrate preferences between CDK-Speedy/Ringo A2 and Cdk2-cyclin complexes. These differences may accommodate the CAK-independent activation of Cdk2 by Speedy/Ringo A2 and they raise the possibility that CDK-Speedy/Ringo A2 complexes could phosphorylate and regulate a subset of non-canonical CDK substrates, such as Cdc25 protein phosphatases, to control cell cycle progression. BioMed Central 2005-09-28 /pmc/articles/PMC1262692/ /pubmed/16191191 http://dx.doi.org/10.1186/1471-2091-6-19 Text en Copyright © 2005 Cheng et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Cheng, Aiyang Gerry, Shannon Kaldis, Philipp Solomon, Mark J Biochemical characterization of Cdk2-Speedy/Ringo A2 |
title | Biochemical characterization of Cdk2-Speedy/Ringo A2 |
title_full | Biochemical characterization of Cdk2-Speedy/Ringo A2 |
title_fullStr | Biochemical characterization of Cdk2-Speedy/Ringo A2 |
title_full_unstemmed | Biochemical characterization of Cdk2-Speedy/Ringo A2 |
title_short | Biochemical characterization of Cdk2-Speedy/Ringo A2 |
title_sort | biochemical characterization of cdk2-speedy/ringo a2 |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1262692/ https://www.ncbi.nlm.nih.gov/pubmed/16191191 http://dx.doi.org/10.1186/1471-2091-6-19 |
work_keys_str_mv | AT chengaiyang biochemicalcharacterizationofcdk2speedyringoa2 AT gerryshannon biochemicalcharacterizationofcdk2speedyringoa2 AT kaldisphilipp biochemicalcharacterizationofcdk2speedyringoa2 AT solomonmarkj biochemicalcharacterizationofcdk2speedyringoa2 |