Cargando…

Application of a disease-specific mapping function to estimate utility gains with effective treatment of schizophrenia

BACKGROUND: Most tools for estimating utilities use clinical trial data from general health status models, such as the 36-Item Short-Form Health Survey (SF-36). A disease-specific model may be more appropriate. The objective of this study was to apply a disease-specific utility mapping function for...

Descripción completa

Detalles Bibliográficos
Autores principales: Lenert, Leslie A, Rupnow, Marcia FT, Elnitsky, Christine
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2005
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1262745/
https://www.ncbi.nlm.nih.gov/pubmed/16153308
http://dx.doi.org/10.1186/1477-7525-3-57
Descripción
Sumario:BACKGROUND: Most tools for estimating utilities use clinical trial data from general health status models, such as the 36-Item Short-Form Health Survey (SF-36). A disease-specific model may be more appropriate. The objective of this study was to apply a disease-specific utility mapping function for schizophrenia to data from a large, 1-year, open-label study of long-acting risperidone and to compare its performance with an SF-36-based utility mapping function. METHODS: Patients with schizophrenia or schizoaffective disorder by DSM-IV criteria received 25, 50, or 75 mg long-acting risperidone every 2 weeks for 12 months. The Positive and Negative Syndrome Scale (PANSS) and SF-36 were used to assess efficacy and health-related quality of life. Movement disorder severity was measured using the Extrapyramidal Symptom Rating Scale (ESRS); data concerning other common adverse effects (orthostatic hypotension, weight gain) were collected. Transforms were applied to estimate utilities. RESULTS: A total of 474 patients completed the study. Long-acting risperidone treatment was associated with a utility gain of 0.051 using the disease-specific function. The estimated gain using an SF-36-based mapping function was smaller: 0.0285. Estimates of gains were only weakly correlated (r = 0.2). Because of differences in scaling and variance, the requisite sample size for a randomized trial to confirm observed effects is much smaller for the disease-specific mapping function (156 versus 672 total subjects). CONCLUSION: Application of a disease-specific mapping function was feasible. Differences in scaling and precision suggest the clinically based mapping function has greater power than the SF-36-based measure to detect differences in utility.