Cargando…
Gain-of-Function Screen for Genes That Affect Drosophila Muscle Pattern Formation
This article reports the production of an EP-element insertion library with more than 3,700 unique target sites within the Drosophila melanogaster genome and its use to systematically identify genes that affect embryonic muscle pattern formation. We designed a UAS/GAL4 system to drive GAL4-responsiv...
Autores principales: | , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2005
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1270011/ https://www.ncbi.nlm.nih.gov/pubmed/16254604 http://dx.doi.org/10.1371/journal.pgen.0010055 |
_version_ | 1782125960676507648 |
---|---|
author | Staudt, Nicole Molitor, Andreas Somogyi, Kalman Mata, Juan Curado, Silvia Eulenberg, Karsten Meise, Martin Siegmund, Thomas Häder, Thomas Hilfiker, Andres Brönner, Günter Ephrussi, Anne Rørth, Pernille Cohen, Stephen M Fellert, Sonja Chung, Ho-Ryun Piepenburg, Olaf Schäfer, Ulrich Jäckle, Herbert Vorbrüggen, Gerd |
author_facet | Staudt, Nicole Molitor, Andreas Somogyi, Kalman Mata, Juan Curado, Silvia Eulenberg, Karsten Meise, Martin Siegmund, Thomas Häder, Thomas Hilfiker, Andres Brönner, Günter Ephrussi, Anne Rørth, Pernille Cohen, Stephen M Fellert, Sonja Chung, Ho-Ryun Piepenburg, Olaf Schäfer, Ulrich Jäckle, Herbert Vorbrüggen, Gerd |
author_sort | Staudt, Nicole |
collection | PubMed |
description | This article reports the production of an EP-element insertion library with more than 3,700 unique target sites within the Drosophila melanogaster genome and its use to systematically identify genes that affect embryonic muscle pattern formation. We designed a UAS/GAL4 system to drive GAL4-responsive expression of the EP-targeted genes in developing apodeme cells to which migrating myotubes finally attach and in an intrasegmental pattern of cells that serve myotubes as a migration substrate on their way towards the apodemes. The results suggest that misexpression of more than 1.5% of the Drosophila genes can interfere with proper myotube guidance and/or muscle attachment. In addition to factors already known to participate in these processes, we identified a number of enzymes that participate in the synthesis or modification of protein carbohydrate side chains and in Ubiquitin modifications and/or the Ubiquitin-dependent degradation of proteins, suggesting that these processes are relevant for muscle pattern formation. |
format | Text |
id | pubmed-1270011 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2005 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-12700112007-02-28 Gain-of-Function Screen for Genes That Affect Drosophila Muscle Pattern Formation Staudt, Nicole Molitor, Andreas Somogyi, Kalman Mata, Juan Curado, Silvia Eulenberg, Karsten Meise, Martin Siegmund, Thomas Häder, Thomas Hilfiker, Andres Brönner, Günter Ephrussi, Anne Rørth, Pernille Cohen, Stephen M Fellert, Sonja Chung, Ho-Ryun Piepenburg, Olaf Schäfer, Ulrich Jäckle, Herbert Vorbrüggen, Gerd PLoS Genet Research Article This article reports the production of an EP-element insertion library with more than 3,700 unique target sites within the Drosophila melanogaster genome and its use to systematically identify genes that affect embryonic muscle pattern formation. We designed a UAS/GAL4 system to drive GAL4-responsive expression of the EP-targeted genes in developing apodeme cells to which migrating myotubes finally attach and in an intrasegmental pattern of cells that serve myotubes as a migration substrate on their way towards the apodemes. The results suggest that misexpression of more than 1.5% of the Drosophila genes can interfere with proper myotube guidance and/or muscle attachment. In addition to factors already known to participate in these processes, we identified a number of enzymes that participate in the synthesis or modification of protein carbohydrate side chains and in Ubiquitin modifications and/or the Ubiquitin-dependent degradation of proteins, suggesting that these processes are relevant for muscle pattern formation. Public Library of Science 2005-10 2005-10-28 /pmc/articles/PMC1270011/ /pubmed/16254604 http://dx.doi.org/10.1371/journal.pgen.0010055 Text en Copyright: © 2005 Staudt et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Staudt, Nicole Molitor, Andreas Somogyi, Kalman Mata, Juan Curado, Silvia Eulenberg, Karsten Meise, Martin Siegmund, Thomas Häder, Thomas Hilfiker, Andres Brönner, Günter Ephrussi, Anne Rørth, Pernille Cohen, Stephen M Fellert, Sonja Chung, Ho-Ryun Piepenburg, Olaf Schäfer, Ulrich Jäckle, Herbert Vorbrüggen, Gerd Gain-of-Function Screen for Genes That Affect Drosophila Muscle Pattern Formation |
title | Gain-of-Function Screen for Genes That Affect Drosophila Muscle Pattern Formation |
title_full | Gain-of-Function Screen for Genes That Affect Drosophila Muscle Pattern Formation |
title_fullStr | Gain-of-Function Screen for Genes That Affect Drosophila Muscle Pattern Formation |
title_full_unstemmed | Gain-of-Function Screen for Genes That Affect Drosophila Muscle Pattern Formation |
title_short | Gain-of-Function Screen for Genes That Affect Drosophila Muscle Pattern Formation |
title_sort | gain-of-function screen for genes that affect drosophila muscle pattern formation |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1270011/ https://www.ncbi.nlm.nih.gov/pubmed/16254604 http://dx.doi.org/10.1371/journal.pgen.0010055 |
work_keys_str_mv | AT staudtnicole gainoffunctionscreenforgenesthataffectdrosophilamusclepatternformation AT molitorandreas gainoffunctionscreenforgenesthataffectdrosophilamusclepatternformation AT somogyikalman gainoffunctionscreenforgenesthataffectdrosophilamusclepatternformation AT matajuan gainoffunctionscreenforgenesthataffectdrosophilamusclepatternformation AT curadosilvia gainoffunctionscreenforgenesthataffectdrosophilamusclepatternformation AT eulenbergkarsten gainoffunctionscreenforgenesthataffectdrosophilamusclepatternformation AT meisemartin gainoffunctionscreenforgenesthataffectdrosophilamusclepatternformation AT siegmundthomas gainoffunctionscreenforgenesthataffectdrosophilamusclepatternformation AT haderthomas gainoffunctionscreenforgenesthataffectdrosophilamusclepatternformation AT hilfikerandres gainoffunctionscreenforgenesthataffectdrosophilamusclepatternformation AT bronnergunter gainoffunctionscreenforgenesthataffectdrosophilamusclepatternformation AT ephrussianne gainoffunctionscreenforgenesthataffectdrosophilamusclepatternformation AT rørthpernille gainoffunctionscreenforgenesthataffectdrosophilamusclepatternformation AT cohenstephenm gainoffunctionscreenforgenesthataffectdrosophilamusclepatternformation AT fellertsonja gainoffunctionscreenforgenesthataffectdrosophilamusclepatternformation AT chunghoryun gainoffunctionscreenforgenesthataffectdrosophilamusclepatternformation AT piepenburgolaf gainoffunctionscreenforgenesthataffectdrosophilamusclepatternformation AT schaferulrich gainoffunctionscreenforgenesthataffectdrosophilamusclepatternformation AT jackleherbert gainoffunctionscreenforgenesthataffectdrosophilamusclepatternformation AT vorbruggengerd gainoffunctionscreenforgenesthataffectdrosophilamusclepatternformation |