Cargando…

Gain-of-Function Screen for Genes That Affect Drosophila Muscle Pattern Formation

This article reports the production of an EP-element insertion library with more than 3,700 unique target sites within the Drosophila melanogaster genome and its use to systematically identify genes that affect embryonic muscle pattern formation. We designed a UAS/GAL4 system to drive GAL4-responsiv...

Descripción completa

Detalles Bibliográficos
Autores principales: Staudt, Nicole, Molitor, Andreas, Somogyi, Kalman, Mata, Juan, Curado, Silvia, Eulenberg, Karsten, Meise, Martin, Siegmund, Thomas, Häder, Thomas, Hilfiker, Andres, Brönner, Günter, Ephrussi, Anne, Rørth, Pernille, Cohen, Stephen M, Fellert, Sonja, Chung, Ho-Ryun, Piepenburg, Olaf, Schäfer, Ulrich, Jäckle, Herbert, Vorbrüggen, Gerd
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2005
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1270011/
https://www.ncbi.nlm.nih.gov/pubmed/16254604
http://dx.doi.org/10.1371/journal.pgen.0010055
_version_ 1782125960676507648
author Staudt, Nicole
Molitor, Andreas
Somogyi, Kalman
Mata, Juan
Curado, Silvia
Eulenberg, Karsten
Meise, Martin
Siegmund, Thomas
Häder, Thomas
Hilfiker, Andres
Brönner, Günter
Ephrussi, Anne
Rørth, Pernille
Cohen, Stephen M
Fellert, Sonja
Chung, Ho-Ryun
Piepenburg, Olaf
Schäfer, Ulrich
Jäckle, Herbert
Vorbrüggen, Gerd
author_facet Staudt, Nicole
Molitor, Andreas
Somogyi, Kalman
Mata, Juan
Curado, Silvia
Eulenberg, Karsten
Meise, Martin
Siegmund, Thomas
Häder, Thomas
Hilfiker, Andres
Brönner, Günter
Ephrussi, Anne
Rørth, Pernille
Cohen, Stephen M
Fellert, Sonja
Chung, Ho-Ryun
Piepenburg, Olaf
Schäfer, Ulrich
Jäckle, Herbert
Vorbrüggen, Gerd
author_sort Staudt, Nicole
collection PubMed
description This article reports the production of an EP-element insertion library with more than 3,700 unique target sites within the Drosophila melanogaster genome and its use to systematically identify genes that affect embryonic muscle pattern formation. We designed a UAS/GAL4 system to drive GAL4-responsive expression of the EP-targeted genes in developing apodeme cells to which migrating myotubes finally attach and in an intrasegmental pattern of cells that serve myotubes as a migration substrate on their way towards the apodemes. The results suggest that misexpression of more than 1.5% of the Drosophila genes can interfere with proper myotube guidance and/or muscle attachment. In addition to factors already known to participate in these processes, we identified a number of enzymes that participate in the synthesis or modification of protein carbohydrate side chains and in Ubiquitin modifications and/or the Ubiquitin-dependent degradation of proteins, suggesting that these processes are relevant for muscle pattern formation.
format Text
id pubmed-1270011
institution National Center for Biotechnology Information
language English
publishDate 2005
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-12700112007-02-28 Gain-of-Function Screen for Genes That Affect Drosophila Muscle Pattern Formation Staudt, Nicole Molitor, Andreas Somogyi, Kalman Mata, Juan Curado, Silvia Eulenberg, Karsten Meise, Martin Siegmund, Thomas Häder, Thomas Hilfiker, Andres Brönner, Günter Ephrussi, Anne Rørth, Pernille Cohen, Stephen M Fellert, Sonja Chung, Ho-Ryun Piepenburg, Olaf Schäfer, Ulrich Jäckle, Herbert Vorbrüggen, Gerd PLoS Genet Research Article This article reports the production of an EP-element insertion library with more than 3,700 unique target sites within the Drosophila melanogaster genome and its use to systematically identify genes that affect embryonic muscle pattern formation. We designed a UAS/GAL4 system to drive GAL4-responsive expression of the EP-targeted genes in developing apodeme cells to which migrating myotubes finally attach and in an intrasegmental pattern of cells that serve myotubes as a migration substrate on their way towards the apodemes. The results suggest that misexpression of more than 1.5% of the Drosophila genes can interfere with proper myotube guidance and/or muscle attachment. In addition to factors already known to participate in these processes, we identified a number of enzymes that participate in the synthesis or modification of protein carbohydrate side chains and in Ubiquitin modifications and/or the Ubiquitin-dependent degradation of proteins, suggesting that these processes are relevant for muscle pattern formation. Public Library of Science 2005-10 2005-10-28 /pmc/articles/PMC1270011/ /pubmed/16254604 http://dx.doi.org/10.1371/journal.pgen.0010055 Text en Copyright: © 2005 Staudt et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Staudt, Nicole
Molitor, Andreas
Somogyi, Kalman
Mata, Juan
Curado, Silvia
Eulenberg, Karsten
Meise, Martin
Siegmund, Thomas
Häder, Thomas
Hilfiker, Andres
Brönner, Günter
Ephrussi, Anne
Rørth, Pernille
Cohen, Stephen M
Fellert, Sonja
Chung, Ho-Ryun
Piepenburg, Olaf
Schäfer, Ulrich
Jäckle, Herbert
Vorbrüggen, Gerd
Gain-of-Function Screen for Genes That Affect Drosophila Muscle Pattern Formation
title Gain-of-Function Screen for Genes That Affect Drosophila Muscle Pattern Formation
title_full Gain-of-Function Screen for Genes That Affect Drosophila Muscle Pattern Formation
title_fullStr Gain-of-Function Screen for Genes That Affect Drosophila Muscle Pattern Formation
title_full_unstemmed Gain-of-Function Screen for Genes That Affect Drosophila Muscle Pattern Formation
title_short Gain-of-Function Screen for Genes That Affect Drosophila Muscle Pattern Formation
title_sort gain-of-function screen for genes that affect drosophila muscle pattern formation
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1270011/
https://www.ncbi.nlm.nih.gov/pubmed/16254604
http://dx.doi.org/10.1371/journal.pgen.0010055
work_keys_str_mv AT staudtnicole gainoffunctionscreenforgenesthataffectdrosophilamusclepatternformation
AT molitorandreas gainoffunctionscreenforgenesthataffectdrosophilamusclepatternformation
AT somogyikalman gainoffunctionscreenforgenesthataffectdrosophilamusclepatternformation
AT matajuan gainoffunctionscreenforgenesthataffectdrosophilamusclepatternformation
AT curadosilvia gainoffunctionscreenforgenesthataffectdrosophilamusclepatternformation
AT eulenbergkarsten gainoffunctionscreenforgenesthataffectdrosophilamusclepatternformation
AT meisemartin gainoffunctionscreenforgenesthataffectdrosophilamusclepatternformation
AT siegmundthomas gainoffunctionscreenforgenesthataffectdrosophilamusclepatternformation
AT haderthomas gainoffunctionscreenforgenesthataffectdrosophilamusclepatternformation
AT hilfikerandres gainoffunctionscreenforgenesthataffectdrosophilamusclepatternformation
AT bronnergunter gainoffunctionscreenforgenesthataffectdrosophilamusclepatternformation
AT ephrussianne gainoffunctionscreenforgenesthataffectdrosophilamusclepatternformation
AT rørthpernille gainoffunctionscreenforgenesthataffectdrosophilamusclepatternformation
AT cohenstephenm gainoffunctionscreenforgenesthataffectdrosophilamusclepatternformation
AT fellertsonja gainoffunctionscreenforgenesthataffectdrosophilamusclepatternformation
AT chunghoryun gainoffunctionscreenforgenesthataffectdrosophilamusclepatternformation
AT piepenburgolaf gainoffunctionscreenforgenesthataffectdrosophilamusclepatternformation
AT schaferulrich gainoffunctionscreenforgenesthataffectdrosophilamusclepatternformation
AT jackleherbert gainoffunctionscreenforgenesthataffectdrosophilamusclepatternformation
AT vorbruggengerd gainoffunctionscreenforgenesthataffectdrosophilamusclepatternformation