Cargando…
Discovery of Human Inversion Polymorphisms by Comparative Analysis of Human and Chimpanzee DNA Sequence Assemblies
With a draft genome-sequence assembly for the chimpanzee available, it is now possible to perform genome-wide analyses to identify, at a submicroscopic level, structural rearrangements that have occurred between chimpanzees and humans. The goal of this study was to investigate chromosomal regions th...
Autores principales: | , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2005
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1270012/ https://www.ncbi.nlm.nih.gov/pubmed/16254605 http://dx.doi.org/10.1371/journal.pgen.0010056 |
_version_ | 1782125960900902912 |
---|---|
author | Feuk, Lars MacDonald, Jeffrey R Tang, Terence Carson, Andrew R Li, Martin Rao, Girish Khaja, Razi Scherer, Stephen W |
author_facet | Feuk, Lars MacDonald, Jeffrey R Tang, Terence Carson, Andrew R Li, Martin Rao, Girish Khaja, Razi Scherer, Stephen W |
author_sort | Feuk, Lars |
collection | PubMed |
description | With a draft genome-sequence assembly for the chimpanzee available, it is now possible to perform genome-wide analyses to identify, at a submicroscopic level, structural rearrangements that have occurred between chimpanzees and humans. The goal of this study was to investigate chromosomal regions that are inverted between the chimpanzee and human genomes. Using the net alignments for the builds of the human and chimpanzee genome assemblies, we identified a total of 1,576 putative regions of inverted orientation, covering more than 154 mega-bases of DNA. The DNA segments are distributed throughout the genome and range from 23 base pairs to 62 mega-bases in length. For the 66 inversions more than 25 kilobases (kb) in length, 75% were flanked on one or both sides by (often unrelated) segmental duplications. Using PCR and fluorescence in situ hybridization we experimentally validated 23 of 27 (85%) semi-randomly chosen regions; the largest novel inversion confirmed was 4.3 mega-bases at human Chromosome 7p14. Gorilla was used as an out-group to assign ancestral status to the variants. All experimentally validated inversion regions were then assayed against a panel of human samples and three of the 23 (13%) regions were found to be polymorphic in the human genome. These polymorphic inversions include 730 kb (at 7p22), 13 kb (at 7q11), and 1 kb (at 16q24) fragments with a 5%, 30%, and 48% minor allele frequency, respectively. Our results suggest that inversions are an important source of variation in primate genome evolution. The finding of at least three novel inversion polymorphisms in humans indicates this type of structural variation may be a more common feature of our genome than previously realized. |
format | Text |
id | pubmed-1270012 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2005 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-12700122007-02-28 Discovery of Human Inversion Polymorphisms by Comparative Analysis of Human and Chimpanzee DNA Sequence Assemblies Feuk, Lars MacDonald, Jeffrey R Tang, Terence Carson, Andrew R Li, Martin Rao, Girish Khaja, Razi Scherer, Stephen W PLoS Genet Research Article With a draft genome-sequence assembly for the chimpanzee available, it is now possible to perform genome-wide analyses to identify, at a submicroscopic level, structural rearrangements that have occurred between chimpanzees and humans. The goal of this study was to investigate chromosomal regions that are inverted between the chimpanzee and human genomes. Using the net alignments for the builds of the human and chimpanzee genome assemblies, we identified a total of 1,576 putative regions of inverted orientation, covering more than 154 mega-bases of DNA. The DNA segments are distributed throughout the genome and range from 23 base pairs to 62 mega-bases in length. For the 66 inversions more than 25 kilobases (kb) in length, 75% were flanked on one or both sides by (often unrelated) segmental duplications. Using PCR and fluorescence in situ hybridization we experimentally validated 23 of 27 (85%) semi-randomly chosen regions; the largest novel inversion confirmed was 4.3 mega-bases at human Chromosome 7p14. Gorilla was used as an out-group to assign ancestral status to the variants. All experimentally validated inversion regions were then assayed against a panel of human samples and three of the 23 (13%) regions were found to be polymorphic in the human genome. These polymorphic inversions include 730 kb (at 7p22), 13 kb (at 7q11), and 1 kb (at 16q24) fragments with a 5%, 30%, and 48% minor allele frequency, respectively. Our results suggest that inversions are an important source of variation in primate genome evolution. The finding of at least three novel inversion polymorphisms in humans indicates this type of structural variation may be a more common feature of our genome than previously realized. Public Library of Science 2005-10 2005-10-28 /pmc/articles/PMC1270012/ /pubmed/16254605 http://dx.doi.org/10.1371/journal.pgen.0010056 Text en Copyright: © 2005 Feuk et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Feuk, Lars MacDonald, Jeffrey R Tang, Terence Carson, Andrew R Li, Martin Rao, Girish Khaja, Razi Scherer, Stephen W Discovery of Human Inversion Polymorphisms by Comparative Analysis of Human and Chimpanzee DNA Sequence Assemblies |
title | Discovery of Human Inversion Polymorphisms by Comparative Analysis of Human and Chimpanzee DNA Sequence Assemblies |
title_full | Discovery of Human Inversion Polymorphisms by Comparative Analysis of Human and Chimpanzee DNA Sequence Assemblies |
title_fullStr | Discovery of Human Inversion Polymorphisms by Comparative Analysis of Human and Chimpanzee DNA Sequence Assemblies |
title_full_unstemmed | Discovery of Human Inversion Polymorphisms by Comparative Analysis of Human and Chimpanzee DNA Sequence Assemblies |
title_short | Discovery of Human Inversion Polymorphisms by Comparative Analysis of Human and Chimpanzee DNA Sequence Assemblies |
title_sort | discovery of human inversion polymorphisms by comparative analysis of human and chimpanzee dna sequence assemblies |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1270012/ https://www.ncbi.nlm.nih.gov/pubmed/16254605 http://dx.doi.org/10.1371/journal.pgen.0010056 |
work_keys_str_mv | AT feuklars discoveryofhumaninversionpolymorphismsbycomparativeanalysisofhumanandchimpanzeednasequenceassemblies AT macdonaldjeffreyr discoveryofhumaninversionpolymorphismsbycomparativeanalysisofhumanandchimpanzeednasequenceassemblies AT tangterence discoveryofhumaninversionpolymorphismsbycomparativeanalysisofhumanandchimpanzeednasequenceassemblies AT carsonandrewr discoveryofhumaninversionpolymorphismsbycomparativeanalysisofhumanandchimpanzeednasequenceassemblies AT limartin discoveryofhumaninversionpolymorphismsbycomparativeanalysisofhumanandchimpanzeednasequenceassemblies AT raogirish discoveryofhumaninversionpolymorphismsbycomparativeanalysisofhumanandchimpanzeednasequenceassemblies AT khajarazi discoveryofhumaninversionpolymorphismsbycomparativeanalysisofhumanandchimpanzeednasequenceassemblies AT schererstephenw discoveryofhumaninversionpolymorphismsbycomparativeanalysisofhumanandchimpanzeednasequenceassemblies |