Cargando…

Wnt5 signaling in vertebrate pancreas development

BACKGROUND: Signaling by the Wnt family of secreted glycoproteins through their receptors, the frizzled (Fz) family of seven-pass transmembrane proteins, is critical for numerous cell fate and tissue polarity decisions during development. RESULTS: We report a novel role of Wnt signaling in organogen...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Hyon J, Schleiffarth, Jack R, Jessurun, Jose, Sumanas, Saulius, Petryk, Anna, Lin, Shuo, Ekker, Stephen C
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2005
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1276788/
https://www.ncbi.nlm.nih.gov/pubmed/16246260
http://dx.doi.org/10.1186/1741-7007-3-23
Descripción
Sumario:BACKGROUND: Signaling by the Wnt family of secreted glycoproteins through their receptors, the frizzled (Fz) family of seven-pass transmembrane proteins, is critical for numerous cell fate and tissue polarity decisions during development. RESULTS: We report a novel role of Wnt signaling in organogenesis using the formation of the islet during pancreatic development as a model tissue. We used the advantages of the zebrafish to visualize and document this process in living embryos and demonstrated that insulin-positive cells actively migrate to form an islet. We used morpholinos (MOs), sequence-specific translational inhibitors, and time-lapse imaging analysis to show that the Wnt-5 ligand and the Fz-2 receptor are required for proper insulin-cell migration in zebrafish. Histological analyses of islets in Wnt5a(-/- )mouse embryos showed that Wnt5a signaling is also critical for murine pancreatic insulin-cell migration. CONCLUSION: Our results implicate a conserved role of a Wnt5/Fz2 signaling pathway in islet formation during pancreatic development. This study opens the door for further investigation into a role of Wnt signaling in vertebrate organ development and disease.