Cargando…

In vitro non-viral gene delivery with nanofibrous scaffolds

Extracellular and intracellular barriers typically prevent non-viral gene vectors from having an effective transfection efficiency. Formulation of a gene delivery vehicle that can overcome the barriers is a key step for successful tissue regeneration. We have developed a novel core-shelled DNA nanop...

Descripción completa

Detalles Bibliográficos
Autores principales: Liang, Dehai, Luu, Yen K., Kim, Kwangsok, Hsiao, Benjamin S., Hadjiargyrou, Michael, Chu, Benjamin
Formato: Texto
Lenguaje:English
Publicado: Oxford University Press 2005
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1277813/
https://www.ncbi.nlm.nih.gov/pubmed/16269820
http://dx.doi.org/10.1093/nar/gni171
Descripción
Sumario:Extracellular and intracellular barriers typically prevent non-viral gene vectors from having an effective transfection efficiency. Formulation of a gene delivery vehicle that can overcome the barriers is a key step for successful tissue regeneration. We have developed a novel core-shelled DNA nanoparticle by invoking solvent-induced condensation of plasmid DNA (β-galactosidase or GFP) in a solvent mixture [94% N,N-dimethylformamide (DMF) + 6% 1× TE buffer] and subsequent encapsulation of the condensed DNA globule in a triblock copolymer, polylactide-poly(ethylene glycol)-polylactide (L(8)E(78)L(8)), in the same solvent environment. The polylactide shell protects the encapsulated DNA from degradation during electrospinning of a mixture of encapsulated DNA nanoparticles and biodegradable PLGA (a random copolymer of lactide and glycolide) to form a nanofibrous non-woven scaffold using the same solution mixture. The bioactive plasmid DNA can then be released in an intact form from the scaffold with a controlled release rate and transfect cells in vitro.