Cargando…

Comparison of Ultrastructural Cytotoxic Effects of Carbon and Carbon/Iron Particulates on Human Monocyte-Derived Macrophages

In this study, we tested the hypothesis that the presence of iron in carbon particulates enhances ultrastructural perturbation in human monocyte-derived macrophages (MDMs) after phagocytosis. We used 1-μm synthetic carbon-based particulates, designed to simulate environmental particulates of mass me...

Descripción completa

Detalles Bibliográficos
Autores principales: Long, John F., Waldman, W. James, Kristovich, Robert, Williams, Marshall, Knight, Deborah, Dutta, Prabir K.
Formato: Texto
Lenguaje:English
Publicado: National Institute of Environmental Health Sciences 2005
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1277860/
https://www.ncbi.nlm.nih.gov/pubmed/15687054
http://dx.doi.org/10.1289/ehp.7389
Descripción
Sumario:In this study, we tested the hypothesis that the presence of iron in carbon particulates enhances ultrastructural perturbation in human monocyte-derived macrophages (MDMs) after phagocytosis. We used 1-μm synthetic carbon-based particulates, designed to simulate environmental particulates of mass median aerodynamic diameter ≤ 2.5 μm (PM(2.5)). Cultures of human MDMs or T-lymphocytes (as a nonphagocytic control) were exposed to carbon or carbon/iron particulates for various time periods and examined by transmission electron microscopy for ultrastructural changes. T-cells failed to internalize either of the particulates and showed no organelle or nuclear changes. Conversely, MDMs avidly phagocytized the particulates. MDMs treated with C particulates exhibited morphologic evidence of macrophage activation but no evidence of lysis of organelles. In contrast, MDMs treated with C/Fe particulates exhibited coalescence of particulate-containing lysosomes. This phenomenon was not observed in the case of C particulates. By 24 hr there was a tendency of the C/Fe particulates to agglomerate into loose or compact clusters. Surrounding the compact C/Fe agglomerates was a uniform zone of nearly total organelle lysis. The lytic changes diminished in proportion to the distance from the agglomerate. In such cells, the nucleus showed loss of chromatin. Although C particles induced no detectable oxidative burst on treated MDMs, C/Fe particles induced a nearly 5-fold increase in the extracellular oxidative burst by treated MDMs compared with untreated controls. Iron bound to C particles catalyzed the decomposition of hydrogen peroxide to generate hydroxyl radicals. Results of these studies suggest that, among particulates of similar size, biologic activity can vary profoundly as a function of particulate physicochemical properties.