Cargando…

Shared RNA-binding sites for interacting members of the Drosophila ELAV family of neuronal proteins

The product of the Drosophila embryonic lethal abnormal visual system is a conserved protein (ELAV) necessary for normal neuronal differentiation and maintenance. It possesses three RNA-binding domains and is involved in the regulation of RNA metabolism. The long elav 3′-untranslated region (3′-UTR)...

Descripción completa

Detalles Bibliográficos
Autores principales: Borgeson, Claudia D., Samson, Marie-Laure
Formato: Texto
Lenguaje:English
Publicado: Oxford University Press 2005
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1283526/
https://www.ncbi.nlm.nih.gov/pubmed/16282587
http://dx.doi.org/10.1093/nar/gki942
Descripción
Sumario:The product of the Drosophila embryonic lethal abnormal visual system is a conserved protein (ELAV) necessary for normal neuronal differentiation and maintenance. It possesses three RNA-binding domains and is involved in the regulation of RNA metabolism. The long elav 3′-untranslated region (3′-UTR) is necessary for autoregulation. We used RNA-binding assays and in vitro selection to identify the ELAV best binding site in the elav 3′-UTR. This site resembles ELAV-binding sites identified previously in heterologous targets, both for its nucleotide sequence and its significant affinity for ELAV (K(d) 40 nM). This finding supports our model that elav autoregulation depends upon direct interaction between ELAV and elav RNA. We narrowed down the best binding site to a 20 nt long sequence A(U(5))A(U(3))G(U(2))A(U(6)) in an alternative 3′ exon. We propose and test a model in which the regulated use of this alternative 3′ exon is involved in normal elav regulation. Found in NEurons (FNE), another neuronal RNA-binding protein paralogous to ELAV, also binds this site. These observations provide a molecular basis for the in vivo interactions reported previously between elav and fne.