Cargando…
Gene identification in novel eukaryotic genomes by self-training algorithm
Finding new protein-coding genes is one of the most important goals of eukaryotic genome sequencing projects. However, genomic organization of novel eukaryotic genomes is diverse and ab initio gene finding tools tuned up for previously studied species are rarely suitable for efficacious gene hunting...
Autores principales: | Lomsadze, Alexandre, Ter-Hovhannisyan, Vardges, Chernoff, Yury O., Borodovsky, Mark |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2005
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1298918/ https://www.ncbi.nlm.nih.gov/pubmed/16314312 http://dx.doi.org/10.1093/nar/gki937 |
Ejemplares similares
-
Integration of mapped RNA-Seq reads into automatic training of eukaryotic gene finding algorithm
por: Lomsadze, Alexandre, et al.
Publicado: (2014) -
GeneMark-EP+: eukaryotic gene prediction with self-training in the space of genes and proteins
por: Brůna, Tomáš, et al.
Publicado: (2020) -
GeneMark-ETP: Automatic Gene Finding in Eukaryotic Genomes in Consistency with Extrinsic Data
por: Bruna, Tomas, et al.
Publicado: (2023) -
BRAKER2: automatic eukaryotic genome annotation with GeneMark-EP+ and AUGUSTUS supported by a protein database
por: Brůna, Tomáš, et al.
Publicado: (2021) -
Ab initio gene identification in metagenomic sequences
por: Zhu, Wenhan, et al.
Publicado: (2010)