Cargando…

Folding Free Energies of 5′-UTRs Impact Post-Transcriptional Regulation on a Genomic Scale in Yeast

Using high-throughput technologies, abundances and other features of genes and proteins have been measured on a genome-wide scale in Saccharomyces cerevisiae. In contrast, secondary structure in 5′–untranslated regions (UTRs) of mRNA has only been investigated for a limited number of genes. Here, th...

Descripción completa

Detalles Bibliográficos
Autores principales: Ringnér, Markus, Krogh, Morten
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2005
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1309706/
https://www.ncbi.nlm.nih.gov/pubmed/16355254
http://dx.doi.org/10.1371/journal.pcbi.0010072
Descripción
Sumario:Using high-throughput technologies, abundances and other features of genes and proteins have been measured on a genome-wide scale in Saccharomyces cerevisiae. In contrast, secondary structure in 5′–untranslated regions (UTRs) of mRNA has only been investigated for a limited number of genes. Here, the aim is to study genome-wide regulatory effects of mRNA 5′-UTR folding free energies. We performed computations of secondary structures in 5′-UTRs and their folding free energies for all verified genes in S. cerevisiae. We found significant correlations between folding free energies of 5′-UTRs and various transcript features measured in genome-wide studies of yeast. In particular, mRNAs with weakly folded 5′-UTRs have higher translation rates, higher abundances of the corresponding proteins, longer half-lives, and higher numbers of transcripts, and are upregulated after heat shock. Furthermore, 5′-UTRs have significantly higher folding free energies than other genomic regions and randomized sequences. We also found a positive correlation between transcript half-life and ribosome occupancy that is more pronounced for short-lived transcripts, which supports a picture of competition between translation and degradation. Among the genes with strongly folded 5′-UTRs, there is a huge overrepresentation of uncharacterized open reading frames. Based on our analysis, we conclude that (i) there is a widespread bias for 5′-UTRs to be weakly folded, (ii) folding free energies of 5′-UTRs are correlated with mRNA translation and turnover on a genomic scale, and (iii) transcripts with strongly folded 5′-UTRs are often rare and hard to find experimentally.