Cargando…

Automatic assessment of alignment quality

Multiple sequence alignments play a central role in the annotation of novel genomes. Given the biological and computational complexity of this task, the automatic generation of high-quality alignments remains challenging. Since multiple alignments are usually employed at the very start of data analy...

Descripción completa

Detalles Bibliográficos
Autores principales: Lassmann, Timo, Sonnhammer, Erik L. L.
Formato: Texto
Lenguaje:English
Publicado: Oxford University Press 2005
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1316116/
https://www.ncbi.nlm.nih.gov/pubmed/16361270
http://dx.doi.org/10.1093/nar/gki1020
Descripción
Sumario:Multiple sequence alignments play a central role in the annotation of novel genomes. Given the biological and computational complexity of this task, the automatic generation of high-quality alignments remains challenging. Since multiple alignments are usually employed at the very start of data analysis pipelines, it is crucial to ensure high alignment quality. We describe a simple, yet elegant, solution to assess the biological accuracy of alignments automatically. Our approach is based on the comparison of several alignments of the same sequences. We introduce two functions to compare alignments: the average overlap score and the multiple overlap score. The former identifies difficult alignment cases by expressing the similarity among several alignments, while the latter estimates the biological correctness of individual alignments. We implemented both functions in the MUMSA program and demonstrate the overall robustness and accuracy of both functions on three large benchmark sets.