Cargando…
Principal component analysis for predicting transcription-factor binding motifs from array-derived data
BACKGROUND: The responses to interleukin 1 (IL-1) in human chondrocytes constitute a complex regulatory mechanism, where multiple transcription factors interact combinatorially to transcription-factor binding motifs (TFBMs). In order to select a critical set of TFBMs from genomic DNA information and...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2005
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1316881/ https://www.ncbi.nlm.nih.gov/pubmed/16297243 http://dx.doi.org/10.1186/1471-2105-6-276 |
_version_ | 1782126401976008704 |
---|---|
author | Liu, Yunlong Vincenti, Matthew P Yokota, Hiroki |
author_facet | Liu, Yunlong Vincenti, Matthew P Yokota, Hiroki |
author_sort | Liu, Yunlong |
collection | PubMed |
description | BACKGROUND: The responses to interleukin 1 (IL-1) in human chondrocytes constitute a complex regulatory mechanism, where multiple transcription factors interact combinatorially to transcription-factor binding motifs (TFBMs). In order to select a critical set of TFBMs from genomic DNA information and an array-derived data, an efficient algorithm to solve a combinatorial optimization problem is required. Although computational approaches based on evolutionary algorithms are commonly employed, an analytical algorithm would be useful to predict TFBMs at nearly no computational cost and evaluate varying modelling conditions. Singular value decomposition (SVD) is a powerful method to derive primary components of a given matrix. Applying SVD to a promoter matrix defined from regulatory DNA sequences, we derived a novel method to predict the critical set of TFBMs. RESULTS: The promoter matrix was defined to establish a quantitative relationship between the IL-1-driven mRNA alteration and genomic DNA sequences of the IL-1 responsive genes. The matrix was decomposed with SVD, and the effects of 8 potential TFBMs (5'-CAGGC-3', 5'-CGCCC-3', 5'-CCGCC-3', 5'-ATGGG-3', 5'-GGGAA-3', 5'-CGTCC-3', 5'-AAAGG-3', and 5'-ACCCA-3') were predicted from a pool of 512 random DNA sequences. The prediction included matches to the core binding motifs of biologically known TFBMs such as AP2, SP1, EGR1, KROX, GC-BOX, ABI4, ETF, E2F, SRF, STAT, IK-1, PPARγ, STAF, ROAZ, and NFκB, and their significance was evaluated numerically using Monte Carlo simulation and genetic algorithm. CONCLUSION: The described SVD-based prediction is an analytical method to provide a set of potential TFBMs involved in transcriptional regulation. The results would be useful to evaluate analytically a contribution of individual DNA sequences. |
format | Text |
id | pubmed-1316881 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2005 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-13168812006-01-30 Principal component analysis for predicting transcription-factor binding motifs from array-derived data Liu, Yunlong Vincenti, Matthew P Yokota, Hiroki BMC Bioinformatics Methodology Article BACKGROUND: The responses to interleukin 1 (IL-1) in human chondrocytes constitute a complex regulatory mechanism, where multiple transcription factors interact combinatorially to transcription-factor binding motifs (TFBMs). In order to select a critical set of TFBMs from genomic DNA information and an array-derived data, an efficient algorithm to solve a combinatorial optimization problem is required. Although computational approaches based on evolutionary algorithms are commonly employed, an analytical algorithm would be useful to predict TFBMs at nearly no computational cost and evaluate varying modelling conditions. Singular value decomposition (SVD) is a powerful method to derive primary components of a given matrix. Applying SVD to a promoter matrix defined from regulatory DNA sequences, we derived a novel method to predict the critical set of TFBMs. RESULTS: The promoter matrix was defined to establish a quantitative relationship between the IL-1-driven mRNA alteration and genomic DNA sequences of the IL-1 responsive genes. The matrix was decomposed with SVD, and the effects of 8 potential TFBMs (5'-CAGGC-3', 5'-CGCCC-3', 5'-CCGCC-3', 5'-ATGGG-3', 5'-GGGAA-3', 5'-CGTCC-3', 5'-AAAGG-3', and 5'-ACCCA-3') were predicted from a pool of 512 random DNA sequences. The prediction included matches to the core binding motifs of biologically known TFBMs such as AP2, SP1, EGR1, KROX, GC-BOX, ABI4, ETF, E2F, SRF, STAT, IK-1, PPARγ, STAF, ROAZ, and NFκB, and their significance was evaluated numerically using Monte Carlo simulation and genetic algorithm. CONCLUSION: The described SVD-based prediction is an analytical method to provide a set of potential TFBMs involved in transcriptional regulation. The results would be useful to evaluate analytically a contribution of individual DNA sequences. BioMed Central 2005-11-18 /pmc/articles/PMC1316881/ /pubmed/16297243 http://dx.doi.org/10.1186/1471-2105-6-276 Text en Copyright © 2005 Liu et al; licensee BioMed Central Ltd. https://creativecommons.org/licenses/by/2.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0 (https://creativecommons.org/licenses/by/2.0/) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Methodology Article Liu, Yunlong Vincenti, Matthew P Yokota, Hiroki Principal component analysis for predicting transcription-factor binding motifs from array-derived data |
title | Principal component analysis for predicting transcription-factor binding motifs from array-derived data |
title_full | Principal component analysis for predicting transcription-factor binding motifs from array-derived data |
title_fullStr | Principal component analysis for predicting transcription-factor binding motifs from array-derived data |
title_full_unstemmed | Principal component analysis for predicting transcription-factor binding motifs from array-derived data |
title_short | Principal component analysis for predicting transcription-factor binding motifs from array-derived data |
title_sort | principal component analysis for predicting transcription-factor binding motifs from array-derived data |
topic | Methodology Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1316881/ https://www.ncbi.nlm.nih.gov/pubmed/16297243 http://dx.doi.org/10.1186/1471-2105-6-276 |
work_keys_str_mv | AT liuyunlong principalcomponentanalysisforpredictingtranscriptionfactorbindingmotifsfromarrayderiveddata AT vincentimatthewp principalcomponentanalysisforpredictingtranscriptionfactorbindingmotifsfromarrayderiveddata AT yokotahiroki principalcomponentanalysisforpredictingtranscriptionfactorbindingmotifsfromarrayderiveddata |