Cargando…
Prediction of MHC class II binding peptides based on an iterative learning model
BACKGROUND: Prediction of the binding ability of antigen peptides to major histocompatibility complex (MHC) class II molecules is important in vaccine development. The variable length of each binding peptide complicates this prediction. Motivated by a text mining model designed for building a classi...
Autores principales: | Murugan, Naveen, Dai, Yang |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2005
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1325229/ https://www.ncbi.nlm.nih.gov/pubmed/16351712 http://dx.doi.org/10.1186/1745-7580-1-6 |
Ejemplares similares
-
The Utility of Supertype Clustering in Prediction for Class II MHC-Peptide Binding
por: Shen, Wen-Jun, et al.
Publicado: (2018) -
Motifs and supermotifs for MHC class II binding peptides
Publicado: (1995) -
Limitations of Ab Initio Predictions of Peptide Binding to MHC Class II Molecules
por: Zhang, Hao, et al.
Publicado: (2010) -
MHCAttnNet: predicting MHC-peptide bindings for MHC alleles classes I and II using an attention-based deep neural model
por: Venkatesh, Gopalakrishnan, et al.
Publicado: (2020) -
Prediction of the binding affinities of peptides to class II MHC using a regularized thermodynamic model
por: Bordner, Andrew J, et al.
Publicado: (2010)