Cargando…
Phosphoenolpyruvate carboxykinase and the critical role of cataplerosis in the control of hepatic metabolism
BACKGROUND: The metabolic function of PEPCK-C is not fully understood; deletion of the gene for the enzyme in mice provides an opportunity to fully assess its function. METHODS: The gene for the cytosolic form of phosphoenolpyruvate carboxykinase (GTP) (EC 4.1.1.32) (PEPCK-C) was deleted in mice by...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2005
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1325233/ https://www.ncbi.nlm.nih.gov/pubmed/16300682 http://dx.doi.org/10.1186/1743-7075-2-33 |
_version_ | 1782126475145641984 |
---|---|
author | Hakimi, Parvin Johnson, Mark T Yang, Jianqi Lepage, David F Conlon, Ronald A Kalhan, Satish C Reshef, Lea Tilghman, Shirley M Hanson, Richard W |
author_facet | Hakimi, Parvin Johnson, Mark T Yang, Jianqi Lepage, David F Conlon, Ronald A Kalhan, Satish C Reshef, Lea Tilghman, Shirley M Hanson, Richard W |
author_sort | Hakimi, Parvin |
collection | PubMed |
description | BACKGROUND: The metabolic function of PEPCK-C is not fully understood; deletion of the gene for the enzyme in mice provides an opportunity to fully assess its function. METHODS: The gene for the cytosolic form of phosphoenolpyruvate carboxykinase (GTP) (EC 4.1.1.32) (PEPCK-C) was deleted in mice by homologous recombination (PEPCK-C(-/- )mice) and the metabolic consequences assessed. RESULTS: PEPCK-C(-/-) mice became severely hypoglycemic by day two after birth and then died with profound hypoglycemia (12 mg/dl). The mice had milk in their stomachs at day two after birth and the administration of glucose raised the concentration of blood glucose in the mice but did not result in an increased survival. PEPCK-C(-/- )mice have two to three times the hepatic triglyceride content as control littermates on the second day after birth. These mice also had an elevation of lactate (2.5 times), β-hydroxybutyrate (3 times) and triglyceride (50%) in their blood, as compared to control animals. On day two after birth, alanine, glycine, glutamine, glutamate, aspartate and asparagine were elevated in the blood of the PEPCK-C(-/- )mice and the blood urea nitrogen concentration was increased by 2-fold. The rate of oxidation of [2-(14)C]-acetate, and [5-(14)C]-glutamate to (14)CO(2 )by liver slices from PEPCK-C(-/- )mice at two days of age was greatly reduced, as was the rate of fatty acid synthesis from acetate and glucose. As predicted by the lack of PEPCK-C, the concentration of malate in the livers of the PEPCK-C(-/- )mice was 10 times that of controls. CONCLUSION: We conclude that PEPCK-C is required not only for gluconeogenesis and glyceroneogenesis but also for cataplerosis (i.e. the removal of citric acid cycle anions) and that the failure of this process in the livers of PEPCK-C(-/- )mice results in a marked reduction in citric acid cycle flux and the shunting of hepatic lipid into triglyceride, resulting in a fatty liver. |
format | Text |
id | pubmed-1325233 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2005 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-13252332006-01-07 Phosphoenolpyruvate carboxykinase and the critical role of cataplerosis in the control of hepatic metabolism Hakimi, Parvin Johnson, Mark T Yang, Jianqi Lepage, David F Conlon, Ronald A Kalhan, Satish C Reshef, Lea Tilghman, Shirley M Hanson, Richard W Nutr Metab (Lond) Research BACKGROUND: The metabolic function of PEPCK-C is not fully understood; deletion of the gene for the enzyme in mice provides an opportunity to fully assess its function. METHODS: The gene for the cytosolic form of phosphoenolpyruvate carboxykinase (GTP) (EC 4.1.1.32) (PEPCK-C) was deleted in mice by homologous recombination (PEPCK-C(-/- )mice) and the metabolic consequences assessed. RESULTS: PEPCK-C(-/-) mice became severely hypoglycemic by day two after birth and then died with profound hypoglycemia (12 mg/dl). The mice had milk in their stomachs at day two after birth and the administration of glucose raised the concentration of blood glucose in the mice but did not result in an increased survival. PEPCK-C(-/- )mice have two to three times the hepatic triglyceride content as control littermates on the second day after birth. These mice also had an elevation of lactate (2.5 times), β-hydroxybutyrate (3 times) and triglyceride (50%) in their blood, as compared to control animals. On day two after birth, alanine, glycine, glutamine, glutamate, aspartate and asparagine were elevated in the blood of the PEPCK-C(-/- )mice and the blood urea nitrogen concentration was increased by 2-fold. The rate of oxidation of [2-(14)C]-acetate, and [5-(14)C]-glutamate to (14)CO(2 )by liver slices from PEPCK-C(-/- )mice at two days of age was greatly reduced, as was the rate of fatty acid synthesis from acetate and glucose. As predicted by the lack of PEPCK-C, the concentration of malate in the livers of the PEPCK-C(-/- )mice was 10 times that of controls. CONCLUSION: We conclude that PEPCK-C is required not only for gluconeogenesis and glyceroneogenesis but also for cataplerosis (i.e. the removal of citric acid cycle anions) and that the failure of this process in the livers of PEPCK-C(-/- )mice results in a marked reduction in citric acid cycle flux and the shunting of hepatic lipid into triglyceride, resulting in a fatty liver. BioMed Central 2005-11-21 /pmc/articles/PMC1325233/ /pubmed/16300682 http://dx.doi.org/10.1186/1743-7075-2-33 Text en Copyright © 2005 Hakimi et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Hakimi, Parvin Johnson, Mark T Yang, Jianqi Lepage, David F Conlon, Ronald A Kalhan, Satish C Reshef, Lea Tilghman, Shirley M Hanson, Richard W Phosphoenolpyruvate carboxykinase and the critical role of cataplerosis in the control of hepatic metabolism |
title | Phosphoenolpyruvate carboxykinase and the critical role of cataplerosis in the control of hepatic metabolism |
title_full | Phosphoenolpyruvate carboxykinase and the critical role of cataplerosis in the control of hepatic metabolism |
title_fullStr | Phosphoenolpyruvate carboxykinase and the critical role of cataplerosis in the control of hepatic metabolism |
title_full_unstemmed | Phosphoenolpyruvate carboxykinase and the critical role of cataplerosis in the control of hepatic metabolism |
title_short | Phosphoenolpyruvate carboxykinase and the critical role of cataplerosis in the control of hepatic metabolism |
title_sort | phosphoenolpyruvate carboxykinase and the critical role of cataplerosis in the control of hepatic metabolism |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1325233/ https://www.ncbi.nlm.nih.gov/pubmed/16300682 http://dx.doi.org/10.1186/1743-7075-2-33 |
work_keys_str_mv | AT hakimiparvin phosphoenolpyruvatecarboxykinaseandthecriticalroleofcataplerosisinthecontrolofhepaticmetabolism AT johnsonmarkt phosphoenolpyruvatecarboxykinaseandthecriticalroleofcataplerosisinthecontrolofhepaticmetabolism AT yangjianqi phosphoenolpyruvatecarboxykinaseandthecriticalroleofcataplerosisinthecontrolofhepaticmetabolism AT lepagedavidf phosphoenolpyruvatecarboxykinaseandthecriticalroleofcataplerosisinthecontrolofhepaticmetabolism AT conlonronalda phosphoenolpyruvatecarboxykinaseandthecriticalroleofcataplerosisinthecontrolofhepaticmetabolism AT kalhansatishc phosphoenolpyruvatecarboxykinaseandthecriticalroleofcataplerosisinthecontrolofhepaticmetabolism AT resheflea phosphoenolpyruvatecarboxykinaseandthecriticalroleofcataplerosisinthecontrolofhepaticmetabolism AT tilghmanshirleym phosphoenolpyruvatecarboxykinaseandthecriticalroleofcataplerosisinthecontrolofhepaticmetabolism AT hansonrichardw phosphoenolpyruvatecarboxykinaseandthecriticalroleofcataplerosisinthecontrolofhepaticmetabolism |