Cargando…

Cortex reorganization of Xenopus laevis eggs in strong static magnetic fields

Observations of magnetic field effects on biological systems have often been contradictory. For amphibian eggs, a review of the available literature suggests that part of the discrepancies might be resolved by considering a previously neglected parameter for morphological alterations induced by magn...

Descripción completa

Detalles Bibliográficos
Autores principales: Mietchen, Daniel, Jakobi, Jörg W, Richter, Hans-Peter
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2005
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1326199/
https://www.ncbi.nlm.nih.gov/pubmed/16351729
http://dx.doi.org/10.1186/1477-044X-3-2
Descripción
Sumario:Observations of magnetic field effects on biological systems have often been contradictory. For amphibian eggs, a review of the available literature suggests that part of the discrepancies might be resolved by considering a previously neglected parameter for morphological alterations induced by magnetic fields – the jelly layers that normally surround the egg and are often removed in laboratory studies for easier cell handling. To experimentally test this hypothesis, we observed the morphology of fertilizable Xenopus laevis eggs with and without jelly coat that were subjected to static magnetic fields of up to 9.4 T for different periods of time. A complex reorganization of cortical pigmentation was found in dejellied eggs as a function of the magnetic field and the field exposure time. Initial pigment rearrangements could be observed at about 0.5 T, and less than 3 T are required for the effects to fully develop within two hours. No effect was observed when the jelly layers of the eggs were left intact. These results suggest that the action of magnetic fields might involve cortical pigments or associated cytoskeletal structures normally held in place by the jelly layers and that the presence of the jelly layer should indeed be included in further studies of magnetic field effects in this system.