Cargando…

Preferential formation of (5S,6R)-thymine glycol for oligodeoxyribonucleotide synthesis and analysis of drug binding to thymine glycol-containing DNA

We previously reported the chemical synthesis of oligonucleotides containing thymine glycol, a major form of oxidative DNA damage. In the preparation of the phosphoramidite building block, the predominant product of the osmium tetroxide oxidation of protected thymidine was (5R,6S)-thymidine glycol....

Descripción completa

Detalles Bibliográficos
Autores principales: Shimizu, Tatsuhiko, Manabe, Koichiro, Yoshikawa, Shinya, Kawasaki, Yusuke, Iwai, Shigenori
Formato: Texto
Lenguaje:English
Publicado: Oxford University Press 2006
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1326250/
https://www.ncbi.nlm.nih.gov/pubmed/16401612
http://dx.doi.org/10.1093/nar/gkj443
Descripción
Sumario:We previously reported the chemical synthesis of oligonucleotides containing thymine glycol, a major form of oxidative DNA damage. In the preparation of the phosphoramidite building block, the predominant product of the osmium tetroxide oxidation of protected thymidine was (5R,6S)-thymidine glycol. To obtain the building block of the other isomer, (5S,6R)-thymidine glycol, in an amount sufficient for oligonucleotide synthesis, the Sharpless asymmetric dihydroxylation (AD) reaction was examined. Although the reaction was very slow, (5S,6R)-thymidine glycol was obtained in preference to the (5R,6S) isomer. The ratio of (5S,6R)- and (5R,6S)-thymidine glycols was 2:1, and a trans isomer was also formed. When an ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate, was used as a co-solvent, the reaction became faster, and the yield was improved without changing the preference. The phosphoramidite building block of (5S,6R)-thymidine glycol was prepared, and oligonucleotides containing 5S-thymine glycol were synthesized. One of the oligonucleotides was used to analyze the binding of distamycin A to thymine glycol-containing DNA by Circular dichroism (CD) spectroscopy and surface plasmon resonance (SPR) measurements. Distamycin A bound to a duplex containing either isomer of thymine glycol within the AATT target site, and its binding was observed even when the thymine glycol was placed opposite cytosine.