Cargando…
Identification of anthranilate and benzoate metabolic operons of Pseudomonas fluorescens and functional characterization of their promoter regions
BACKGROUND: In an effort to identify alternate recombinant gene expression systems in Pseudomonas fluorescens, we identified genes encoding two native metabolic pathways that were inducible with inexpensive compounds: the anthranilate operon (antABC) and the benzoate operon (benABCD). RESULTS: The a...
Autores principales: | , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1360089/ https://www.ncbi.nlm.nih.gov/pubmed/16396686 http://dx.doi.org/10.1186/1475-2859-5-1 |
_version_ | 1782126689886666752 |
---|---|
author | Retallack, Diane M Thomas, Tracey C Shao, Ying Haney, Keith L Resnick, Sol M Lee, Vincent D Squires, Charles H |
author_facet | Retallack, Diane M Thomas, Tracey C Shao, Ying Haney, Keith L Resnick, Sol M Lee, Vincent D Squires, Charles H |
author_sort | Retallack, Diane M |
collection | PubMed |
description | BACKGROUND: In an effort to identify alternate recombinant gene expression systems in Pseudomonas fluorescens, we identified genes encoding two native metabolic pathways that were inducible with inexpensive compounds: the anthranilate operon (antABC) and the benzoate operon (benABCD). RESULTS: The antABC and benABCD operons were identified by homology to the Acinetobacter sp. anthranilate operon and Pseudomonas putida benzoate operon, and were confirmed to be regulated by anthranilate or benzoate, respectively. Fusions of the putative promoter regions to the E. coli lacZ gene were constructed to confirm inducible gene expression. Each operon was found to be controlled by an AraC family transcriptional activator, located immediately upstream of the first structural gene in each respective operon (antR or benR). CONCLUSION: We have found the anthranilate and benzoate promoters to be useful for tightly controlling recombinant gene expression at both small (< 1 L) and large (20 L) fermentation scales. |
format | Text |
id | pubmed-1360089 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2006 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-13600892006-02-02 Identification of anthranilate and benzoate metabolic operons of Pseudomonas fluorescens and functional characterization of their promoter regions Retallack, Diane M Thomas, Tracey C Shao, Ying Haney, Keith L Resnick, Sol M Lee, Vincent D Squires, Charles H Microb Cell Fact Research BACKGROUND: In an effort to identify alternate recombinant gene expression systems in Pseudomonas fluorescens, we identified genes encoding two native metabolic pathways that were inducible with inexpensive compounds: the anthranilate operon (antABC) and the benzoate operon (benABCD). RESULTS: The antABC and benABCD operons were identified by homology to the Acinetobacter sp. anthranilate operon and Pseudomonas putida benzoate operon, and were confirmed to be regulated by anthranilate or benzoate, respectively. Fusions of the putative promoter regions to the E. coli lacZ gene were constructed to confirm inducible gene expression. Each operon was found to be controlled by an AraC family transcriptional activator, located immediately upstream of the first structural gene in each respective operon (antR or benR). CONCLUSION: We have found the anthranilate and benzoate promoters to be useful for tightly controlling recombinant gene expression at both small (< 1 L) and large (20 L) fermentation scales. BioMed Central 2006-01-05 /pmc/articles/PMC1360089/ /pubmed/16396686 http://dx.doi.org/10.1186/1475-2859-5-1 Text en Copyright © 2006 Retallack et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Retallack, Diane M Thomas, Tracey C Shao, Ying Haney, Keith L Resnick, Sol M Lee, Vincent D Squires, Charles H Identification of anthranilate and benzoate metabolic operons of Pseudomonas fluorescens and functional characterization of their promoter regions |
title | Identification of anthranilate and benzoate metabolic operons of Pseudomonas fluorescens and functional characterization of their promoter regions |
title_full | Identification of anthranilate and benzoate metabolic operons of Pseudomonas fluorescens and functional characterization of their promoter regions |
title_fullStr | Identification of anthranilate and benzoate metabolic operons of Pseudomonas fluorescens and functional characterization of their promoter regions |
title_full_unstemmed | Identification of anthranilate and benzoate metabolic operons of Pseudomonas fluorescens and functional characterization of their promoter regions |
title_short | Identification of anthranilate and benzoate metabolic operons of Pseudomonas fluorescens and functional characterization of their promoter regions |
title_sort | identification of anthranilate and benzoate metabolic operons of pseudomonas fluorescens and functional characterization of their promoter regions |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1360089/ https://www.ncbi.nlm.nih.gov/pubmed/16396686 http://dx.doi.org/10.1186/1475-2859-5-1 |
work_keys_str_mv | AT retallackdianem identificationofanthranilateandbenzoatemetabolicoperonsofpseudomonasfluorescensandfunctionalcharacterizationoftheirpromoterregions AT thomastraceyc identificationofanthranilateandbenzoatemetabolicoperonsofpseudomonasfluorescensandfunctionalcharacterizationoftheirpromoterregions AT shaoying identificationofanthranilateandbenzoatemetabolicoperonsofpseudomonasfluorescensandfunctionalcharacterizationoftheirpromoterregions AT haneykeithl identificationofanthranilateandbenzoatemetabolicoperonsofpseudomonasfluorescensandfunctionalcharacterizationoftheirpromoterregions AT resnicksolm identificationofanthranilateandbenzoatemetabolicoperonsofpseudomonasfluorescensandfunctionalcharacterizationoftheirpromoterregions AT leevincentd identificationofanthranilateandbenzoatemetabolicoperonsofpseudomonasfluorescensandfunctionalcharacterizationoftheirpromoterregions AT squirescharlesh identificationofanthranilateandbenzoatemetabolicoperonsofpseudomonasfluorescensandfunctionalcharacterizationoftheirpromoterregions |