Cargando…

Evaluation of methods for oligonucleotide array data via quantitative real-time PCR

BACKGROUND: There are currently many different methods for processing and summarizing probe-level data from Affymetrix oligonucleotide arrays. It is of great interest to validate these methods and identify those that are most effective. There is no single best way to do this validation, and a variet...

Descripción completa

Detalles Bibliográficos
Autores principales: Qin, Li-Xuan, Beyer, Richard P, Hudson, Francesca N, Linford, Nancy J, Morris, Daryl E, Kerr, Kathleen F
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2006
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1360686/
https://www.ncbi.nlm.nih.gov/pubmed/16417622
http://dx.doi.org/10.1186/1471-2105-7-23
_version_ 1782126708477919232
author Qin, Li-Xuan
Beyer, Richard P
Hudson, Francesca N
Linford, Nancy J
Morris, Daryl E
Kerr, Kathleen F
author_facet Qin, Li-Xuan
Beyer, Richard P
Hudson, Francesca N
Linford, Nancy J
Morris, Daryl E
Kerr, Kathleen F
author_sort Qin, Li-Xuan
collection PubMed
description BACKGROUND: There are currently many different methods for processing and summarizing probe-level data from Affymetrix oligonucleotide arrays. It is of great interest to validate these methods and identify those that are most effective. There is no single best way to do this validation, and a variety of approaches is needed. Moreover, gene expression data are collected to answer a variety of scientific questions, and the same method may not be best for all questions. Only a handful of validation studies have been done so far, most of which rely on spike-in datasets and focus on the question of detecting differential expression. Here we seek methods that excel at estimating relative expression. We evaluate methods by identifying those that give the strongest linear association between expression measurements by array and the "gold-standard" assay. Quantitative reverse-transcription polymerase chain reaction (qRT-PCR) is generally considered the "gold-standard" assay for measuring gene expression by biologists and is often used to confirm findings from microarray data. Here we use qRT-PCR measurements to validate methods for the components of processing oligo array data: background adjustment, normalization, mismatch adjustment, and probeset summary. An advantage of our approach over spike-in studies is that methods are validated on a real dataset that was collected to address a scientific question. RESULTS: We initially identify three of six popular methods that consistently produced the best agreement between oligo array and RT-PCR data for medium- and high-intensity genes. The three methods are generally known as MAS5, gcRMA, and the dChip mismatch mode. For medium- and high-intensity genes, we identified use of data from mismatch probes (as in MAS5 and dChip mismatch) and a sequence-based method of background adjustment (as in gcRMA) as the most important factors in methods' performances. However, we found poor reliability for methods using mismatch probes for low-intensity genes, which is in agreement with previous studies. CONCLUSION: We advocate use of sequence-based background adjustment in lieu of mismatch adjustment to achieve the best results across the intensity spectrum. No method of normalization or probeset summary showed any consistent advantages.
format Text
id pubmed-1360686
institution National Center for Biotechnology Information
language English
publishDate 2006
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-13606862006-02-10 Evaluation of methods for oligonucleotide array data via quantitative real-time PCR Qin, Li-Xuan Beyer, Richard P Hudson, Francesca N Linford, Nancy J Morris, Daryl E Kerr, Kathleen F BMC Bioinformatics Research Article BACKGROUND: There are currently many different methods for processing and summarizing probe-level data from Affymetrix oligonucleotide arrays. It is of great interest to validate these methods and identify those that are most effective. There is no single best way to do this validation, and a variety of approaches is needed. Moreover, gene expression data are collected to answer a variety of scientific questions, and the same method may not be best for all questions. Only a handful of validation studies have been done so far, most of which rely on spike-in datasets and focus on the question of detecting differential expression. Here we seek methods that excel at estimating relative expression. We evaluate methods by identifying those that give the strongest linear association between expression measurements by array and the "gold-standard" assay. Quantitative reverse-transcription polymerase chain reaction (qRT-PCR) is generally considered the "gold-standard" assay for measuring gene expression by biologists and is often used to confirm findings from microarray data. Here we use qRT-PCR measurements to validate methods for the components of processing oligo array data: background adjustment, normalization, mismatch adjustment, and probeset summary. An advantage of our approach over spike-in studies is that methods are validated on a real dataset that was collected to address a scientific question. RESULTS: We initially identify three of six popular methods that consistently produced the best agreement between oligo array and RT-PCR data for medium- and high-intensity genes. The three methods are generally known as MAS5, gcRMA, and the dChip mismatch mode. For medium- and high-intensity genes, we identified use of data from mismatch probes (as in MAS5 and dChip mismatch) and a sequence-based method of background adjustment (as in gcRMA) as the most important factors in methods' performances. However, we found poor reliability for methods using mismatch probes for low-intensity genes, which is in agreement with previous studies. CONCLUSION: We advocate use of sequence-based background adjustment in lieu of mismatch adjustment to achieve the best results across the intensity spectrum. No method of normalization or probeset summary showed any consistent advantages. BioMed Central 2006-01-17 /pmc/articles/PMC1360686/ /pubmed/16417622 http://dx.doi.org/10.1186/1471-2105-7-23 Text en Copyright © 2006 Qin et al; licensee BioMed Central Ltd.
spellingShingle Research Article
Qin, Li-Xuan
Beyer, Richard P
Hudson, Francesca N
Linford, Nancy J
Morris, Daryl E
Kerr, Kathleen F
Evaluation of methods for oligonucleotide array data via quantitative real-time PCR
title Evaluation of methods for oligonucleotide array data via quantitative real-time PCR
title_full Evaluation of methods for oligonucleotide array data via quantitative real-time PCR
title_fullStr Evaluation of methods for oligonucleotide array data via quantitative real-time PCR
title_full_unstemmed Evaluation of methods for oligonucleotide array data via quantitative real-time PCR
title_short Evaluation of methods for oligonucleotide array data via quantitative real-time PCR
title_sort evaluation of methods for oligonucleotide array data via quantitative real-time pcr
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1360686/
https://www.ncbi.nlm.nih.gov/pubmed/16417622
http://dx.doi.org/10.1186/1471-2105-7-23
work_keys_str_mv AT qinlixuan evaluationofmethodsforoligonucleotidearraydataviaquantitativerealtimepcr
AT beyerrichardp evaluationofmethodsforoligonucleotidearraydataviaquantitativerealtimepcr
AT hudsonfrancescan evaluationofmethodsforoligonucleotidearraydataviaquantitativerealtimepcr
AT linfordnancyj evaluationofmethodsforoligonucleotidearraydataviaquantitativerealtimepcr
AT morrisdaryle evaluationofmethodsforoligonucleotidearraydataviaquantitativerealtimepcr
AT kerrkathleenf evaluationofmethodsforoligonucleotidearraydataviaquantitativerealtimepcr