Cargando…
Gene selection and classification of microarray data using random forest
BACKGROUND: Selection of relevant genes for sample classification is a common task in most gene expression studies, where researchers try to identify the smallest possible set of genes that can still achieve good predictive performance (for instance, for future use with diagnostic purposes in clinic...
Autores principales: | Díaz-Uriarte, Ramón, Alvarez de Andrés, Sara |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1363357/ https://www.ncbi.nlm.nih.gov/pubmed/16398926 http://dx.doi.org/10.1186/1471-2105-7-3 |
Ejemplares similares
-
A balanced iterative random forest for gene selection from microarray data
por: Anaissi, Ali, et al.
Publicado: (2013) -
Random forest for gene selection and microarray data classification
por: Moorthy, Kohbalan, et al.
Publicado: (2011) -
GeneSrF and varSelRF: a web-based tool and R package for gene selection and classification using random forest
por: Diaz-Uriarte, Ramón
Publicado: (2007) -
Gene selection for classification of microarray data based on the Bayes error
por: Zhang, Ji-Gang, et al.
Publicado: (2007) -
Tumor classification and marker gene prediction by feature selection and fuzzy c-means clustering using microarray data
por: Wang, Junbai, et al.
Publicado: (2003)