Cargando…
SynTReN: a generator of synthetic gene expression data for design and analysis of structure learning algorithms
BACKGROUND: The development of algorithms to infer the structure of gene regulatory networks based on expression data is an important subject in bioinformatics research. Validation of these algorithms requires benchmark data sets for which the underlying network is known. Since experimental data set...
Autores principales: | Van den Bulcke, Tim, Van Leemput, Koenraad, Naudts, Bart, van Remortel, Piet, Ma, Hongwu, Verschoren, Alain, De Moor, Bart, Marchal, Kathleen |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1373604/ https://www.ncbi.nlm.nih.gov/pubmed/16438721 http://dx.doi.org/10.1186/1471-2105-7-43 |
Ejemplares similares
-
Validating module network learning algorithms using simulated data
por: Michoel, Tom, et al.
Publicado: (2007) -
Prediction of kinase-specific phosphorylation sites using conditional random fields
por: Dang, Thanh Hai, et al.
Publicado: (2008) -
Flexible network reconstruction from relational databases with Cytoscape and CytoSQL
por: Laukens, Kris, et al.
Publicado: (2010) -
More robust detection of motifs in coexpressed genes by using phylogenetic information
por: Monsieurs, Pieter, et al.
Publicado: (2006) -
Foundations of generic optimization
por: Iglesias, M, et al.
Publicado: (2006)