Cargando…
Geostatistical analysis of disease data: visualization and propagation of spatial uncertainty in cancer mortality risk using Poisson kriging and p-field simulation
BACKGROUND: Smoothing methods have been developed to improve the reliability of risk cancer estimates from sparsely populated geographical entities. Filtering local details of the spatial variation of the risk leads however to the detection of larger clusters of low or high cancer risk while most sp...
Autor principal: | Goovaerts, Pierre |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1388192/ https://www.ncbi.nlm.nih.gov/pubmed/16469095 http://dx.doi.org/10.1186/1476-072X-5-7 |
Ejemplares similares
-
Geostatistical analysis of disease data: estimation of cancer mortality risk from empirical frequencies using Poisson kriging
por: Goovaerts, Pierre
Publicado: (2005) -
Geostatistical analysis of disease data: accounting for spatial support and population density in the isopleth mapping of cancer mortality risk using area-to-point Poisson kriging
por: Goovaerts, Pierre
Publicado: (2006) -
How does Poisson kriging compare to the popular BYM model for mapping disease risks?
por: Goovaerts, Pierre, et al.
Publicado: (2008) -
Application of Poisson kriging to the mapping of cholera and dysentery incidence in an endemic area of Bangladesh
por: Ali, Mohammad, et al.
Publicado: (2006) -
Accounting for regional background and population size in the detection of spatial clusters and outliers using geostatistical filtering and spatial neutral models: the case of lung cancer in Long Island, New York
por: Goovaerts, Pierre, et al.
Publicado: (2004)