Cargando…
Simultaneous localization of MLL, AF4 and ENL genes in interphase nuclei by 3D-FISH: MLL translocation revisited
BACKGROUND: Haematological cancer is characterised by chromosomal translocation (e.g. MLL translocation in acute leukaemia) and two models have been proposed to explain the origins of recurrent reciprocal translocation. The first, established from pairs of translocated genes (such as BCR and ABL), c...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1388228/ https://www.ncbi.nlm.nih.gov/pubmed/16433901 http://dx.doi.org/10.1186/1471-2407-6-20 |
_version_ | 1782126905037684736 |
---|---|
author | Gué, Michaël Sun, Jian-Sheng Boudier, Thomas |
author_facet | Gué, Michaël Sun, Jian-Sheng Boudier, Thomas |
author_sort | Gué, Michaël |
collection | PubMed |
description | BACKGROUND: Haematological cancer is characterised by chromosomal translocation (e.g. MLL translocation in acute leukaemia) and two models have been proposed to explain the origins of recurrent reciprocal translocation. The first, established from pairs of translocated genes (such as BCR and ABL), considers the spatial proximity of loci in interphase nuclei (static "contact first" model). The second model is based on the dynamics of double strand break ends during repair processes (dynamic "breakage first" model). Since the MLL gene involved in 11q23 translocation has more than 40 partners, the study of the relative positions of the MLL gene with both the most frequent partner gene (AF4) and a less frequent partner gene (ENL), should elucidate the MLL translocation mechanism. METHODS: Using triple labeling 3D FISH experiments, we have determined the relative positions of MLL, AF4 and ENL genes, in two lymphoblastic and two myeloid human cell lines. RESULTS: In all cell lines, the ENL gene is significantly closer to the MLL gene than the AF4 gene (with P value < 0.0001). According to the static "contact first" model of the translocation mechanism, a minimal distance between loci would indicate a greater probability of the occurrence of t(11;19)(q23;p13.3) compared to t(4;11)(q21;q23). However this is in contradiction to the epidemiology of 11q23 translocation. CONCLUSION: The simultaneous multi-probe hybridization in 3D-FISH is a new approach in addressing the correlation between spatial proximity and occurrence of translocation. Our observations are not consistent with the static "contact first" model of translocation. The recently proposed dynamic "breakage first" model offers an attractive alternative explanation. |
format | Text |
id | pubmed-1388228 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2006 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-13882282006-03-04 Simultaneous localization of MLL, AF4 and ENL genes in interphase nuclei by 3D-FISH: MLL translocation revisited Gué, Michaël Sun, Jian-Sheng Boudier, Thomas BMC Cancer Research Article BACKGROUND: Haematological cancer is characterised by chromosomal translocation (e.g. MLL translocation in acute leukaemia) and two models have been proposed to explain the origins of recurrent reciprocal translocation. The first, established from pairs of translocated genes (such as BCR and ABL), considers the spatial proximity of loci in interphase nuclei (static "contact first" model). The second model is based on the dynamics of double strand break ends during repair processes (dynamic "breakage first" model). Since the MLL gene involved in 11q23 translocation has more than 40 partners, the study of the relative positions of the MLL gene with both the most frequent partner gene (AF4) and a less frequent partner gene (ENL), should elucidate the MLL translocation mechanism. METHODS: Using triple labeling 3D FISH experiments, we have determined the relative positions of MLL, AF4 and ENL genes, in two lymphoblastic and two myeloid human cell lines. RESULTS: In all cell lines, the ENL gene is significantly closer to the MLL gene than the AF4 gene (with P value < 0.0001). According to the static "contact first" model of the translocation mechanism, a minimal distance between loci would indicate a greater probability of the occurrence of t(11;19)(q23;p13.3) compared to t(4;11)(q21;q23). However this is in contradiction to the epidemiology of 11q23 translocation. CONCLUSION: The simultaneous multi-probe hybridization in 3D-FISH is a new approach in addressing the correlation between spatial proximity and occurrence of translocation. Our observations are not consistent with the static "contact first" model of translocation. The recently proposed dynamic "breakage first" model offers an attractive alternative explanation. BioMed Central 2006-01-24 /pmc/articles/PMC1388228/ /pubmed/16433901 http://dx.doi.org/10.1186/1471-2407-6-20 Text en Copyright © 2006 Gué et al; licensee BioMed Central Ltd. |
spellingShingle | Research Article Gué, Michaël Sun, Jian-Sheng Boudier, Thomas Simultaneous localization of MLL, AF4 and ENL genes in interphase nuclei by 3D-FISH: MLL translocation revisited |
title | Simultaneous localization of MLL, AF4 and ENL genes in interphase nuclei by 3D-FISH: MLL translocation revisited |
title_full | Simultaneous localization of MLL, AF4 and ENL genes in interphase nuclei by 3D-FISH: MLL translocation revisited |
title_fullStr | Simultaneous localization of MLL, AF4 and ENL genes in interphase nuclei by 3D-FISH: MLL translocation revisited |
title_full_unstemmed | Simultaneous localization of MLL, AF4 and ENL genes in interphase nuclei by 3D-FISH: MLL translocation revisited |
title_short | Simultaneous localization of MLL, AF4 and ENL genes in interphase nuclei by 3D-FISH: MLL translocation revisited |
title_sort | simultaneous localization of mll, af4 and enl genes in interphase nuclei by 3d-fish: mll translocation revisited |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1388228/ https://www.ncbi.nlm.nih.gov/pubmed/16433901 http://dx.doi.org/10.1186/1471-2407-6-20 |
work_keys_str_mv | AT guemichael simultaneouslocalizationofmllaf4andenlgenesininterphasenucleiby3dfishmlltranslocationrevisited AT sunjiansheng simultaneouslocalizationofmllaf4andenlgenesininterphasenucleiby3dfishmlltranslocationrevisited AT boudierthomas simultaneouslocalizationofmllaf4andenlgenesininterphasenucleiby3dfishmlltranslocationrevisited |