Cargando…
GPNN: Power studies and applications of a neural network method for detecting gene-gene interactions in studies of human disease
BACKGROUND: The identification and characterization of genes that influence the risk of common, complex multifactorial disease primarily through interactions with other genes and environmental factors remains a statistical and computational challenge in genetic epidemiology. We have previously intro...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1388239/ https://www.ncbi.nlm.nih.gov/pubmed/16436204 http://dx.doi.org/10.1186/1471-2105-7-39 |
Sumario: | BACKGROUND: The identification and characterization of genes that influence the risk of common, complex multifactorial disease primarily through interactions with other genes and environmental factors remains a statistical and computational challenge in genetic epidemiology. We have previously introduced a genetic programming optimized neural network (GPNN) as a method for optimizing the architecture of a neural network to improve the identification of gene combinations associated with disease risk. The goal of this study was to evaluate the power of GPNN for identifying high-order gene-gene interactions. We were also interested in applying GPNN to a real data analysis in Parkinson's disease. RESULTS: We show that GPNN has high power to detect even relatively small genetic effects (2–3% heritability) in simulated data models involving two and three locus interactions. The limits of detection were reached under conditions with very small heritability (<1%) or when interactions involved more than three loci. We tested GPNN on a real dataset comprised of Parkinson's disease cases and controls and found a two locus interaction between the DLST gene and sex. CONCLUSION: These results indicate that GPNN may be a useful pattern recognition approach for detecting gene-gene and gene-environment interactions. |
---|