Cargando…

Analysis of nuclear fiber cell compaction in transparent and cataractous diabetic human lenses by scanning electron microscopy

BACKGROUND: Compaction of human ocular lens fiber cells as a function of both aging and cataractogenesis has been demonstrated previously using scanning electron microscopy. The purpose of this investigation is to quantify morphological differences in the inner nuclear regions of cataractous and non...

Descripción completa

Detalles Bibliográficos
Autores principales: Freel, Christopher D, Al-Ghoul, Kristin J, Kuszak, Jer R, Costello, M Joseph
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2003
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC140319/
https://www.ncbi.nlm.nih.gov/pubmed/12515578
http://dx.doi.org/10.1186/1471-2415-3-1
_version_ 1782120606641160192
author Freel, Christopher D
Al-Ghoul, Kristin J
Kuszak, Jer R
Costello, M Joseph
author_facet Freel, Christopher D
Al-Ghoul, Kristin J
Kuszak, Jer R
Costello, M Joseph
author_sort Freel, Christopher D
collection PubMed
description BACKGROUND: Compaction of human ocular lens fiber cells as a function of both aging and cataractogenesis has been demonstrated previously using scanning electron microscopy. The purpose of this investigation is to quantify morphological differences in the inner nuclear regions of cataractous and non-cataractous human lenses from individuals with diabetes. The hypothesis is that, even in the presence of the osmotic stress caused by diabetes, compaction rather than swelling occurs in the nucleus of diabetic lenses. METHODS: Transparent and nuclear cataractous lenses from diabetic patients were examined by scanning electron microscopy (SEM). Measurements of the fetal nuclear (FN) elliptical angles (anterior and posterior), embryonic nuclear (EN) anterior-posterior (A-P) axial thickness, and the number of EN fiber cell membrane folds over 20 μm were compared. RESULTS: Diabetic lenses with nuclear cataract exhibited smaller FN elliptical angles, smaller EN axial thicknesses, and larger numbers of EN compaction folds than their non-cataractous diabetic counterparts. CONCLUSION: As in non-diabetic lenses, the inner nuclei of cataractous lenses from diabetics were significantly more compacted than those of non-cataractous diabetics. Little difference between diabetic and non-diabetic compaction levels was found, suggesting that diabetes does not affect the degree of compaction. However, consistent with previous proposals, diabetes does appear to accelerate the formation of cataracts that are similar to age-related nuclear cataracts in non-diabetics. We conclude that as scattering increases in the diabetic lens with cataract formation, fiber cell compaction is significant.
format Text
id pubmed-140319
institution National Center for Biotechnology Information
language English
publishDate 2003
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-1403192003-02-04 Analysis of nuclear fiber cell compaction in transparent and cataractous diabetic human lenses by scanning electron microscopy Freel, Christopher D Al-Ghoul, Kristin J Kuszak, Jer R Costello, M Joseph BMC Ophthalmol Research Article BACKGROUND: Compaction of human ocular lens fiber cells as a function of both aging and cataractogenesis has been demonstrated previously using scanning electron microscopy. The purpose of this investigation is to quantify morphological differences in the inner nuclear regions of cataractous and non-cataractous human lenses from individuals with diabetes. The hypothesis is that, even in the presence of the osmotic stress caused by diabetes, compaction rather than swelling occurs in the nucleus of diabetic lenses. METHODS: Transparent and nuclear cataractous lenses from diabetic patients were examined by scanning electron microscopy (SEM). Measurements of the fetal nuclear (FN) elliptical angles (anterior and posterior), embryonic nuclear (EN) anterior-posterior (A-P) axial thickness, and the number of EN fiber cell membrane folds over 20 μm were compared. RESULTS: Diabetic lenses with nuclear cataract exhibited smaller FN elliptical angles, smaller EN axial thicknesses, and larger numbers of EN compaction folds than their non-cataractous diabetic counterparts. CONCLUSION: As in non-diabetic lenses, the inner nuclei of cataractous lenses from diabetics were significantly more compacted than those of non-cataractous diabetics. Little difference between diabetic and non-diabetic compaction levels was found, suggesting that diabetes does not affect the degree of compaction. However, consistent with previous proposals, diabetes does appear to accelerate the formation of cataracts that are similar to age-related nuclear cataracts in non-diabetics. We conclude that as scattering increases in the diabetic lens with cataract formation, fiber cell compaction is significant. BioMed Central 2003-01-06 /pmc/articles/PMC140319/ /pubmed/12515578 http://dx.doi.org/10.1186/1471-2415-3-1 Text en Copyright © 2003 Freel et al; licensee BioMed Central Ltd. This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original URL.
spellingShingle Research Article
Freel, Christopher D
Al-Ghoul, Kristin J
Kuszak, Jer R
Costello, M Joseph
Analysis of nuclear fiber cell compaction in transparent and cataractous diabetic human lenses by scanning electron microscopy
title Analysis of nuclear fiber cell compaction in transparent and cataractous diabetic human lenses by scanning electron microscopy
title_full Analysis of nuclear fiber cell compaction in transparent and cataractous diabetic human lenses by scanning electron microscopy
title_fullStr Analysis of nuclear fiber cell compaction in transparent and cataractous diabetic human lenses by scanning electron microscopy
title_full_unstemmed Analysis of nuclear fiber cell compaction in transparent and cataractous diabetic human lenses by scanning electron microscopy
title_short Analysis of nuclear fiber cell compaction in transparent and cataractous diabetic human lenses by scanning electron microscopy
title_sort analysis of nuclear fiber cell compaction in transparent and cataractous diabetic human lenses by scanning electron microscopy
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC140319/
https://www.ncbi.nlm.nih.gov/pubmed/12515578
http://dx.doi.org/10.1186/1471-2415-3-1
work_keys_str_mv AT freelchristopherd analysisofnuclearfibercellcompactionintransparentandcataractousdiabetichumanlensesbyscanningelectronmicroscopy
AT alghoulkristinj analysisofnuclearfibercellcompactionintransparentandcataractousdiabetichumanlensesbyscanningelectronmicroscopy
AT kuszakjerr analysisofnuclearfibercellcompactionintransparentandcataractousdiabetichumanlensesbyscanningelectronmicroscopy
AT costellomjoseph analysisofnuclearfibercellcompactionintransparentandcataractousdiabetichumanlensesbyscanningelectronmicroscopy