Cargando…
Missing value estimation for DNA microarray gene expression data by Support Vector Regression imputation and orthogonal coding scheme
BACKGROUND: Gene expression profiling has become a useful biological resource in recent years, and it plays an important role in a broad range of areas in biology. The raw gene expression data, usually in the form of large matrix, may contain missing values. The downstream analysis methods that post...
Autores principales: | Wang, Xian, Li, Ao, Jiang, Zhaohui, Feng, Huanqing |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1403803/ https://www.ncbi.nlm.nih.gov/pubmed/16426462 http://dx.doi.org/10.1186/1471-2105-7-32 |
Ejemplares similares
-
Shrinkage regression-based methods for microarray missing value imputation
por: Wang, Hsiuying, et al.
Publicado: (2013) -
An efficient ensemble method for missing value imputation in microarray gene expression data
por: Zhu, Xinshan, et al.
Publicado: (2021) -
Accounting for one-channel depletion improves missing value imputation in 2-dye microarray data
por: Ritz, Cecilia, et al.
Publicado: (2008) -
A hybrid imputation approach for microarray missing value estimation
por: Li, Huihui, et al.
Publicado: (2015) -
Feature selection using distributions of orthogonal PLS regression vectors in spectral data
por: Lee, Geonseok, et al.
Publicado: (2021)