Cargando…

Expression of the heat shock gene clpL of Streptococcus thermophilus is induced by both heat and cold shock

BACKGROUND: Heat and cold shock response are normally considered as independent phenomena. A small amount of evidence suggests instead that interactions may exist between them in two Lactococcus strains. RESULTS: We show the occurrence of molecular relationships between the mechanisms of cold and he...

Descripción completa

Detalles Bibliográficos
Autores principales: Varcamonti, Mario, Arsenijevic, Slavica, Martirani, Luca, Fusco, Daniela, Naclerio, Gino, De Felice, Maurilio
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2006
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1409795/
https://www.ncbi.nlm.nih.gov/pubmed/16480499
http://dx.doi.org/10.1186/1475-2859-5-6
Descripción
Sumario:BACKGROUND: Heat and cold shock response are normally considered as independent phenomena. A small amount of evidence suggests instead that interactions may exist between them in two Lactococcus strains. RESULTS: We show the occurrence of molecular relationships between the mechanisms of cold and heat adaptations in Streptococcus thermophilus, a lactic acid bacterium widely used in dairy fermentation, where it undergoes both types of stress. We observed that cryotolerance is increased when cells are pre-incubated at high temperature. In addition, the production of a protein, identified as ClpL, a member of the heat-shock ATPase family Clp A/B, is induced at both high and low temperature. A knock-out clpL mutant is deficient in both heat and cold tolerance. However lack of production of this protein does not abolish the positive effect of heat pre-treatment towards cryotolerance. CONCLUSION: Dual induction of ClpL by cold and heat exposure of cells and reduced tolerance to both temperature shocks in a clpL mutant indicates that the two stress responses are correlated in S. thermophilus. However this protein is not responsible by itself for cryotolerance of cells pre-treated at high temperature, indicating that ClpL is necessary for the two phenomena, but does not account by itself for the relationships between them.