Cargando…
Bench-to-bedside review: Amelioration of acute renal impairment using ethyl pyruvate
Inflammation and oxidative stress cause renal impairment. Renal failure exacerbates the effect of oxidative stress on many organ systems. Antioxidants can prevent or treat renal failure in various experimental models and clinical situations. Pyruvate is an endogenous antioxidant with beneficial effe...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2005
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1414032/ https://www.ncbi.nlm.nih.gov/pubmed/16356237 http://dx.doi.org/10.1186/cc3892 |
Sumario: | Inflammation and oxidative stress cause renal impairment. Renal failure exacerbates the effect of oxidative stress on many organ systems. Antioxidants can prevent or treat renal failure in various experimental models and clinical situations. Pyruvate is an endogenous antioxidant with beneficial effects in animal models of oxidative stress. Because sodium pyruvate rapidly degrades in solution, a simple derivative of pyruvic acid, namely ethyl pyruvate, has been investigated as a therapeutic agent in preclinical studies. Ethyl pyruvate reduces organ system damage in ischaemia/reperfusion injury and haemorrhagic and endotoxic shock, at least in part through its antioxidant action. In addition, ethyl pyruvate appears to have direct beneficial effects on cytokine expression and proinflammatory gene regulation. The effect is long lasting and, importantly, even when it is administered after the onset of inflammation it can ameliorate organ damage and improve survival. Ethyl pyruvate is a widely used as a food additive and was shown to be safe in phase I clinical trials. We suggest ethyl pyruvate warrants further evaluation in the management of acute renal impairment. |
---|